2023

B.A./B.Sc. **Fourth Semester**

CORE - 10PHYSICS

Course Code: PHC 4.31(R) (Analog Systems & Applications)

Total Mark: 70 Time: 3 hours

Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a) What is an energy level diagram? Explain the energy-level diagram		gram				
		for hydrogen.	1+3=4				
	(b)	Explain why a semiconductor acts as an insulator at 0° K and	why				
		it's a conductivity increases with increasing temperature.	3				
	(c)	Define drift velocity. With the help of a proper circuit diagram	derive				
		an expression for electron drift velocity.	2+5=7				
2.	(a)	 a) The seven lowest energy levels of sodium vapour are 0, 2.10, 3.19, 3.60, 3.75, 4.10 and 4.26 eV respectively. A photon of wavelength 3300 Å is absorbed by an atom of the vapour. (i) What are all the possible florescent lines that may appear? 					
		(ii) If three photons are emitted and one of these is 11,380 Å					
		what are the wavelength of the other two photon?	2+2=4				
	(b)	Explain the barrier formation in a PN junction diode.	3				
	(c)	Explain in detail the difference in current flow mechanism in a					
		forward and reverse-biased diodes.	7				
LINIT II							

UNII-II

3.	(a)	With a circuit diagram explain the input signal rectification by a	a
		centre-tapped rectifier. What is it's rectification efficiency?	4+2=6
	(b)	Explain the principle and structure of a LED.	4
	(c)	Explain the VI characteristics of CC transistor.	4

- 4. (a) What is a Zener diode? Explain how it can be used as a voltage regulator. 2+4=6
 - (b) Obtain the ripple factor of a bridge rectifier.
 - (c) Plot a neat output characteristic of CB-Transistor and hence explain:

3

5

4

8

4

- (i) Active region
- (ii) Cut-offregion
- (iii) Saturation region

UNIT-III

5.	(a)	Define stability factor. Calculate the stability factor for CB and	d CE
		circuits.	2+4=6
	(b)	Draw the circuit diagram of a transistor with voltage divider b	ias.
		Explain the working and hence show that the DC bias circuit	is
		independent of B.	2+4=6
	(c)	Differentiate between a class A and a class B amplifier.	2
6.	(a)	Give a detailed analysis of a single stage CE amplifier using hy	vbrid
		model. What is it's output impedence?	4+2=6
	(h)	With proper circuit diagram explain the operation of a two st	\mathbf{P}

(b) With proper circuit diagram explain the operation of a two-stage RC coupled amplifier. Also explain its frequency response. 8

UNIT-IV

- 7. (a) What is the advantage of negative feedback over positive feedback in an amplifier. 2
 - (b) In a negative-feedback amplifier, A = 100, B = 0.04 and $V_i = 50$ mV. Find
 - (i) gain with feedback
 - (ii) output voltage
 - (iii) feedback factor
 - (iv) feedback voltage
 - (c) Explain the principle and working of a RC pahse-shift oscillator. Obtain an expression for the oscillation frequency.
- 8. (a) Explain in brief the effect of negative feedback on the gain and bandwidth of the amplifier.

		$C_1 = 0.005 \mu\text{F}$, $C_2 = 0.01 \mu\text{F}$, and $C_C = 10 \mu\text{F}$, find the oscillation frequency.	1 2
		UNIT-V	
9.	(a)	For an op-amp having a slew rate of $SR = 2 \text{ V/}\mu\text{s}$, what is the maximum closed-loop voltage gain that can be used when the input	
	(b)	signal varies by 0.5 V in $10 \mu s$. Determine the output voltage of an op-amp for input voltages of	3
		$V_{i1} = 150 \mu V$ and $V_{i2} = 140 \mu V$. The amplifier has a differential gain of $A_d = 4000$ and CMRR = 100.	3
	(c)	Explain with proper circuit diagram, the application of op-amp as(i) differentiator(ii) log amplifier	5
	(d)	With proper circuit explain in brief the operation of an n-bit R-2R resistor ladder.	3
10.	(a)	Show the circuit and explain how to measure A_V and R_i of an op-amp.	2
	(b)	Draw the schematic diagram of an ideal inverting op-amp with voltage-shunt feedback impedances Z and Z' , and indicate the	
	(c)	virtual-ground model for calculating the gain. A 5 mV, 1 kHz sinusoidal signal is applied to the input of an op-amp	4 p
		integrator for which $R = 100$ K and $C = 1 \mu$ F. Find the output voltage.	3
	(d)	For an ideal inverting amplifier with $R_1 = 1$ K and $R_f = 1$ M, determine (i) voltage gain	
	(e)	(ii) input resistance(iii) output resistanceDefine weighted network with a circuit diagram.	3 2

(b) With a proper circuit diagarm explain a Hartley oscillator and it's operator. Also, find it's operation frequency.

9.

8 (c) A Colpitt's oscillator having $L = 100 \,\mu\text{H}$, $L_{RFC} = 0.5 \,\text{mH}$,