2023

B.A./B.Sc.

Fourth Semester

CORE - 9

PHYSICS

Course Code: PHC 4.21 (Elements of Modern Physics)

Total Mark: 70 Pass Mark: 28

Time: 3 hours

Answer five questions, taking one from each unit.

UNIT-I

(a) Show that Planck's law of radiation reduces to Rayleigh Jean's formula for longer wavelengths.
 (b) The equivalent wavelength of a moving electron is 0.24 × 10⁻¹⁰ m. What voltage applied between two grids will bring it to rest?
 (c) Derive the Einstein's photoelectric equation.
 (a) Define group velocity of a wave group and derive its expression. Show that the group velocity of the de-Broglie wave associated with a particle is the same as the particle velocity.
 (b) Consider an electron of momentum p in the Coulomb field of a

proton. The total energy is
$$E = \frac{p^2}{2m} - \frac{e^2}{(4\pi\epsilon_0)r}$$
,

where r is the distance of the electron from the proton. Assuming that the uncertainty Δr of the radial coordinate is $\Delta r \approx r$ and that $\Delta p \approx p$, use Heisenberg's uncertainty principle $\Delta r \Delta p \approx \hbar$ to obtain an estimate of the size and the energy of the hydrogen atom in the ground state.

(c) Explain the concept of energy and time uncertainty.

UNIT-II

- 3. (a) What do you understand by eigen value and eigen function? Explain the physical interpretation of wave function. 1+3=4
 (b) Calculate the values of energy of a particle in a one-dimensional box. Graphically indicate some of the wave functions for such a particle. 10
 4. (a) Show that the probability current density for a plane wave in a medium is equal to the product of probability density and the velocity
- 4. (a) Show that the probability current density for a plane wave in a medium is equal to the product of probability density and the velocity of a particle in the medium.
 - (b) Normalize the wave function given by $\Psi(x) = Ae^{ikx}$, over the region $-a \le x < a$.

2

(c) Calculate the expectation value $\langle p_x \rangle$ of the momentum of a particle in a one-dimensional box.

UNIT-III

- 5. (a) What is a potential step? Find the reflection and transmission co-efficient for potential step of the form $0 < E < V_0$. Show that there is a finite probability of locating the particle in the region which is forbidden classically. What is the penetration distance? Give its relation to the mass of the incident particle. 6+2+2=10
 - (b) Can a particle confined in a one-dimensional box have zero energy.What is the minimum value of its energy? How does the idea of a "zero-point energy" match with the requirements of Heisenberg's uncertainty principle?
- 6. (a) What are magic numbers? Explain how the shell model of the nucleus accounts for the existence of magic numbers. 1+6=7
 - (b) Explain binding energy of the nucleus. Calculate the binding energy of an α -particle and express the result both in MeV and joules. 1+2=3
 - (c) Discuss the characteristics of nuclear forces.

UNIT-IV

7.	(b)	Explain how the age of earth can be estimated from radioactive studies. 3 Calculate the time required for 10% of a sample of thorium to disintegrate. Assume the half-life of thorium to be 1.4×10^{10} years. 3 Give the relevant theory of successive disintegration of radioactive elements. What do you mean by radioactive equilibrium? Obtain the conditions for secular and transient equilibrium.
8.	(b)	Explain how Gamow's theory of alpha decay leads to Geiger-Nuttal law. The mean half-life of radium (226) is 1600 year and that for radon (222) is 3.8 day. Calculate the volume of radon gas that would be in equilibrium with 1 g of radium. 3 Explain the experimental verification of the existence of neutrino.
		UNIT-V
9.	(b)	What is chain reaction? Explain the critical size of the fissile material to maintain chain reaction. $1+2=3$ Draw a neat diagram of nuclear reactor and explain its working. 8 What are thermonuclear reactions? Explain carbon-nitrogen cycle and proton-proton cycle as source of stellar energy. $1+2=3$
10.	(b)	Explain the differences between spontaneous and stimulated emissions. What are three level and four level lasers? Describe the construction and working of ruby laser. 2+6=8 Write a shote note on the basic technique used in holography. How is it different from photography? 3