2023

B.A./B.Sc. Second Semester GENERIC ELECTIVE – 2 MATHEMATICS Course Code: MAG 2.11 (Algebra)

Total Mark: 70 Time: 3 hours Pass Mark: 28

5

Answer five questions, taking one from each unit.

UNIT-I

1. (a) If A and B are two bounded subsets of real numbers \mathbb{R} , then prove that $A \cap B$ is also bounded. 3

(b) If
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$
 then, show that

$$\lim_{n \to \infty} \left[\left(\frac{2}{1} \right) \left(\frac{3}{2} \right)^2 \left(\frac{4}{3} \right)^3 \dots \left(\frac{n+1}{n} \right)^n \right] = e.$$
3

- (c) Using ε -definition, show that the sequence $f_n = \sqrt{n+1} \sqrt{n}$, $\forall n \in \mathbb{N}$ is convergent.
- (d) Show that the sequence $\left\{\frac{2n-7}{3n+2}\right\}$ is monotonically increasing and bounded above. 3
- 2. (a) Show that

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1$$
 3

(b) If
$$a, b \in \mathbb{R}$$
, then prove that $|a+b| \le |a|+|b|$.

(c) Show that the sequence $\{S_n\}$, defined by the recursion formula $S_n = \sqrt{3S_n}$, $S_1 = 1$ converges to 3.

(d) Find the
$$n^{\text{th}}$$
 term of $\left\{\sqrt{\frac{1}{4}}, \sqrt{\frac{2}{6}}, \sqrt{\frac{3}{8}}, \ldots\right\}$.

6

UNIT-II

3. (a) Use integral test to show that the series $\sum \frac{1}{n^p}$ converges if p > 1and diverges if $p \le 1$.

(b) Using comparison test, show that the series $\sum \frac{bn-a}{bn^2+a^2}$, where *a*, *b* are constant is divergent.

(c) Test for absolute convergence of the series

$$\sum_{n=1}^{\infty} (-1)^{(n-1)} \frac{n^2}{(n+1)!}$$
 5

4. (a) Prove by comparison test that the series

$$\frac{1}{(\log 2)^p} + \frac{1}{(\log 3)^p} + \frac{1}{(\log 4)^p} + \dots \text{ diverges for } p > 0.$$
 6

(b) Show that the series $1 + \frac{x^2}{2} + \frac{x^4}{4} + \frac{x^6}{6} + \dots$ converges for $0 \le x < 1$ and diverges for $x \ge 1$.

(c) Test the convergence of the series
$$\sum_{n=1}^{\infty} \frac{2^{n-1}}{3^n + 1}$$
 3

UNIT-III

5. (a) Find the equation whose roots are 3, 1, -4 and -5.

(b) Show that the roots of the equation $\frac{1}{r-a} + \frac{1}{r-b} + \frac{1}{r-c}$, where a > b > c > 0 are real. 6 6

(c) Prove that every equation of n^{th} degree has n roots

- 6. (a) Solve $x^3 + 6x^2 12x + 32 = 0$ using Cardan's method. 6
 - (b) Apply Descartes' rule of sign to discuss the nature of roots of the equation $x^4 + 16x^2 + 7x - 11 = 0$.

4

4

4

5

2

3

(c) Find the condition that the cubic equation $x^3 - px^2 + qx - r = 0$ should have its root in geometric progression. 4

UNIT-IV

- 7. (a) For the set of real numbers \mathbb{R} , we define binary operation * as follows a * b = 2ab.
 - (i) Is * commutative? If not, give a counterexample.
 - (ii) Prove or disprove that * is associative.
 - (b) Show that the cube root of unity $\{1, w, w^2\}$ forms a group under multiplication.
 - (c) Prove that the union of two subgroups of a group G is a subgroup of G if and only if one is contained in the other. 6
- 8. (a) For each $a \in (G, *)$, the inverse element a^{-1} is unique. 4
 - (b) Let \mathbb{Z} be the set of all integers. An operation * defined by a * b = a + b - 2, $\forall a, b \in \mathbb{Z}$. Show that $(\mathbb{Z}, *)$ is an abelian group.

(c) Let *S* be a set defined by
$$S = \left\{ \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}, a \in \mathbb{R} \right\}$$
. Is *S* closed under

- matrix multiplication?
- (d) Prove that $\{1, i, -1, -i\}$ is a cyclic group under the operation of product of two complex numbers. Also, find the generators.

UNIT-V

9. (a) Show that $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix}$ is an odd permutation.	2
(b) Show that the group $(1, 2, 3, 4, 5, 6, \times_7)$ is cyclic. How many generators are there?	4
(c) Prove that an infinite cyclic group has exactly two generators.	4
(d) Let $H = \{0, 3, 6\}$. Find all the left cosets of H in $(G, +_9)$.	4
10. (a) State and prove Lagrange's theorem.	4
(b) Find all the generators of \mathbb{Z}_8 and \mathbb{Z}_{20} .	4
(c) Find $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}^{-1}$	2
(d) If <i>H</i> is any subgroup of <i>G</i> and $h \in H$, then prove that $Hh = H = hH$.	4