2023

B.A./B.Sc.

Sixth Semester

CORE - 14

MATHEMATICS

Course Code: MAC 6.21 (Ring Theory & Linear Algebra - II)

Total Mark: 70 Time: 3 hours Pass Mark: 28

7

3

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	If $R[x]$ is the ring of polynomials of a ring R, prove that R is an	
		integral domain if and only if $R[x]$ is an integral domain. What ca	an
		you say about $R[x]$ if R is a field?	5
	(b)	State and prove the division algorithm for polynomials.	5
	(c)	Let <i>F</i> be a field. If $f(x) \in F[x]$ and deg $f(x)$ is 2 or 3, prove the	at
		f(x) is reducible over F if and only if $f(x)$ has a zero in F.	4
2.	(a)	Prove that the product of two primitive polynomials is primitive.	5
	(b)	If $f(x) \in Z[x]$ is reducible over Q (the field of rational), prove the	hat
		f(x) is reducible over Z (the ring of integers).	4
	(c)	If F is a field, prove that $F[x]$ is a principal ideal domain.	5

UNIT-II

3.	(a) Prove that every Euclidean domain is a principal ideal domain.	5
	(b) Show that $\frac{Q[x]}{I}$, where $I = (x^2 - 5x + 6)$ is not a field.	2
	(a) Prove that avery principal ideal domain is a unique factorization	

- (c) Prove that every principal ideal domain is a unique factorization domain.
- 4. (a) Show that $\sqrt{-5}$ is a prime element in the ring $Z\left[\sqrt{-5}\right] = \left\{a + \sqrt{-5}b : a, b \in \mathbb{Z}\right\}$

(b) If *R* is an integral domain with unity in which every non-zero, non unit element is a finite product of irreducible elements and every irreducible elements is prime, prove that *R* is unique factorization domain.

4

5

5

4

(c) Prove that every irreducible element in R[x] is an irreducible polynomial in R[x], R being an integral domain with unity. Is the converse true? Justify.

UNIT-III

- 5. (a) If $B = \{ (1,-2,3), (1,-1,1), (2,-4,7) \}$ is a basis of $V_3(\mathbb{R})$, find its dual basis.
 - (b) If $\{v_1, v_2, ..., v_n\}$ is a basis of the vector space *V* over a field *F* and $\{f_1, f_2, ..., f_n\}$ is the dual basis of $\{v_1, v_2, ..., v_n\}$, then prove that

(i) any vector $v \in V$ is expressible as $v = \sum_{i=1}^{n} f_i(v)v_i$.

- (ii) any linear functional $f \in v^*$ is expressible as $f = \sum_{i=1}^n f_i(v) f_i$.
- (c) If $T: V \to U$ is a linear map and $T^*: U^* \to V^*$ is its transpose, show that the Kernel of T^* is the annihilator of the image of T. 4
- 6. (a) Let $\lambda_1, \lambda_2, ..., \lambda_k$ be the distinct eigen values of $T \in L(V)$. If W_i be the eigen space corresponding to the eigen values λ_i and if $W = W_1 + W_2 + ... + W_k$ then prove that $\dim W = \dim W_1 + \dim W_2 + ... + \dim W_k$ 4
 - (b) Prove that the minimal polynomial of a matrix of linear operator is unique.
 - (c) If T is a linear operator on R^3 which is represented in the standard

ordered basis by the matrix
$$A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$$
, prove that *T* is

diagonalizable by exhibiting a basis of R^3 each of which is a eigenvector of T.

6

3

UNIT-IV

- 7. (a) Prove that every finite dimensional vector space is an inner product space. 5
 - (b) Find an orthonormal basis of the vector space V of all real polynomials of degree not greater than two, in which the inner

product space is defined as $\langle \phi(x), \psi(x) \rangle = \int_{-1}^{1} \phi(x), \psi(x) dx$ where $\phi(x), \psi(x) \in V$.

- (c) Prove that an orthonormal set of vectors is linearly independent. 3
- 8. (a) Let *W* be a subspace of an inner product space *V*. Show that (i) $V = W \oplus W^{\perp}$ (ii) $W = W^{\perp \perp}$ 5
 - (b) If $\{u_1, u_2, ..., u_n\}$ be any finite orthonormal set in an inner product space *V* over a field *F* and if *u* is any vector in *V* then prove that $\sum_{i=1}^{n} |\langle u, u_i \rangle|^2 \le ||u||^2$ Furthermore, show that equality holds if and only if *u* is the subspace generated by $\{u_1, u_2, ..., u_n\}$.
 - (c) Find the norm of the vector v = (1, -2, 5). Also normalize this vector.

UNIT-V

9. (a) If *T* and *S* are linear operators on an inner product space *V* over field *F*, prove that

(i)
$$(T+S)^* = T^* + S^*$$

(ii) $(aT)^* = \overline{a}T^*$ where $a \in F$
(ii) $(TS)^* = S^*T^*$
(iv) $(T^*)^* = T$
4

(b) Let $A \in M_{n \times n}(F)$ and $y \in F^n$. Then prove that there exists $x_o \in F^n$ such that $(A^*A)x_o = A^*y$ and $||Ax_0 - y|| \le ||Ax - y|| \forall y \in F^n$. Furthermore, if rank(A) = n then prove that $x_0 = (A^*A)^{-1}A^*y$. 5

- (c) Suppose *T* is a linear operator on an inner product space V(F). Then show that the adjoint T^* of *T* exists such that $TT^* = T^*T = I$ if and only if *T* is unitary. 5
- 10. (a) Let *T* be a linear operator on a complex inner product space *V*. Then prove that *T* is normal if and only if $||T^*(u)|| = ||T(u)|| \forall u \in V$. 4
 - (b) Show that a linear operator E is a perpendicular projection in an inner product space if and only if it is idempotent and self-adjoint.

6

(c) Prove that if T be a normal operator on a finite dimensional complex inner product space V, then every subspace of V which is invariant under T is also invariant under T^* .