2023

B.A./B.Sc.

Sixth Semester

 $CORE - 14$

MATHEMATICS

Course Code: MAC 6.21 (Ring Theory & Linear Algebra - II)

Total Mark: 70 Pass Mark: 28 Time: 3 hours

Answer five *questions, taking* one *from each unit.*

UNIT–I

- (b) If $f(x) \in Z[x]$ is reducible over Q (the field of rational), prove that $f(x)$ is reducible over *Z* (the ring of integers). 4
- (c) If *F* is a field, prove that $F[x]$ is a principal ideal domain. $\overline{5}$

UNIT–II

- (c) Prove that every principal ideal domain is a unique factorization domain. 7
- 4. (a) Show that $\sqrt{-5}$ is a prime element in the ring $Z\left[\sqrt{-5}\right] = \left\{a + \sqrt{-5}b : a, b \in \mathbb{Z}\right\}$ 3
- (b) If *R* is an integral domain with unity in which every non-zero, non unit element is a finite product of irreducible elements and every irreducible elements is prime, prove that *R* is unique factorization domain. 7
- (c) Prove that every irreducible element in $R[x]$ is an irreducible polynomial in $R[x]$, R being an integral domain with unity. Is the converse true? Justify. 4

UNIT–III

- 5. (a) If $B = \{(1,-2,3), (1,-1,1), (2,-4,7)\}$ is a basis of $V_3(\mathbb{R})$, find its dual basis. 5
	- (b) If $\{v_1, v_2, ..., v_n\}$ is a basis of the vector space *V* over a field *F* and $\{f_1, f_2, ..., f_n\}$ is the dual basis of $\{v_1, v_2, ..., v_n\}$, then prove that

(i) any vector $v \in V$ is expressible as $v = \sum_{i=1}^{\infty}$ $\sum_{i=1}^{n} f_i(v)$ $i \vee \vee i$ *i* $v = \sum f_i(v)v$ $=\sum_{i=1} f_i(v) v_i$.

(ii) any linear functional $f \in v^*$ is expressible as $f = \sum f_i(v)$ 1 *n* $f = \sum f_i(v) f_i$. *i* =

5

- (c) If $T: V \to U$ is a linear map and $T^*: U^* \to V^*$ is its transpose, show that the Kernel of *T** is the annihilator of the image of *T*. 4
- 6. (a) Let $\lambda_1, \lambda_2, \ldots, \lambda_k$ be the distinct eigen values of $T \in L(V)$. If W_i be the eigen space corresponding to the eigen values λ_i and if $W = W_1 + W_2 + \ldots + W_k$ then prove that $\dim W = \dim W_1 + \dim W_2 + ... + \dim W_k$ 4
	- (b) Prove that the minimal polynomial of a matrix of linear operator is unique. 4
	- (c) If *T* is a linear operator on R^3 which is represented in the standard

ordered basis by the matrix
$$
A = \begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}
$$
, prove that *T* is

diagonalizable by exhibiting a basis of $R³$ each of which is a eigen vector of *T*.

UNIT–IV

- 7. (a) Prove that every finite dimensional vector space is an inner product space. 5
	- (b) Find an orthonormal basis of the vector space *V* of all real polynomials of degree not greater than two, in which the inner

product space is defined as 1 1 $\phi(x), \psi(x)$ = $\int \phi(x), \psi(x) dx$ where − $\phi(x), \psi(x) \in V$. 6

- (c) Prove that an orthonormal set of vectors is linearly independent. 3
- 8. (a) Let *W* be a subspace of an inner product space *V*. Show that (i) $V = W \oplus W^{\perp}$ (ii) $W = W^{\perp \perp}$ 5
	- (b) If $\{u_1, u_2, ..., u_n\}$ be any finite orthonormal set in an inner product space *V* over a field *F* and if *u* is any vector in *V* then prove that $\sum_{i=1}^{n} |\langle u, u_i \rangle|^2 \le ||u||^2$ *i*=1 $\sum |u_i u_i|^2 \le ||u||^2$. Furthermore, show that equality holds if and only if *u* is the subspace generated by $\{u_1, u_2, ..., u_n\}$. 6
	- (c) Find the norm of the vector $v = (1, -2, 5)$. Also normalize this vector.

3

UNIT–V

9. (a) If *T* and *S* are linear operators on an inner product space *V* over field *F*, prove that

(i)
$$
(T + S)^* = T^* + S^*
$$

\n(ii) $(aT)^* = \overline{a}T^*$ where $a \in F$
\n(ii) $(TS)^* = S^*T^*$
\n(iv) $(T^*)^* = T$ 4

(b) Let $A \in M_{n\times n}(F)$ and $y \in F^n$. Then prove that there exists $x_o \in F^n$ such that $(A^*A)x_o = A^*y$ and $Ax_0 - y$ \leq $||Ax - y|| \forall y \in F^n$. Furthermore, if $rank(A) = n$ then prove that $x_0 = (A^*A)^{-1}A^* y$.

- (c) Suppose *T* is a linear operator on an inner product space *V*(*F*). Then show that the adjoint T^* of *T* exists such that $TT^* = T^*T = I$ if and only if *T* is unitary. 5
- 10. (a) Let *T* be a linear operator on a complex inner product space *V*. Then prove that *T* is normal if and only if $||T^*(u)|| = ||T(u)|| \forall u \in V$. 4
	- (b) Show that a linear operator E is a perpendicular projection in an inner product space if and only if it is idempotent and self-adjoint.

6

(c) Prove that if *T* be a normal operator on a finite dimensional complex inner product space *V*, then every subspace of *V* which is invariant under *T* is also invariant under *T**. 4
