2023

B.A./B.Sc.

Sixth Semester

 $CORE - 13$

MATHEMATICS

Course Code: MAC 6.11 (Metric Spaces & Complex Analysis)

Total Mark: 70 Pass Mark: 28 Time: 3 hours

Answer five *questions, taking* one *from each unit.*

UNIT–I

1. (a) Let $X = \mathbb{R}^n$ and define $\frac{1}{2}$ 2 1 $(x, y) = \sum_{i} (x_i - y_i)$ *n i i i* $d(x, y) = \sum_{i=1}^{n} (x_i - y_i)$ $=\left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^2$ for all $x, y \in \mathbb{R}^n$. Show that (X, d) forms a metric space. 5

- (b) If *A* is a subset of a metric (X, d) , then show that A° is an open subset of *A* that contains every open subset of *A*. 5
- (c) Let (X, d) be a metric space. Define $d': X \times X \to \mathbb{R}$ by

 $d'(x, y) = \frac{d(x, y)}{1 + d(x, y)}, \forall x, y \in X$ + . Prove that *d'* is also a metric on *X*. 4

- 2. (a) If *F* is a subset of the metric space (X, d) , then show that *F* is closed in *X* if and only if F^c is open in *X*. 5
	- (b) Prove that the metric space (X, d) is complete if and only if, for every nested sequence ${F_n}_{n \geq 0}$ of nonempty closed subsets *X*, the

intersection $\bigcap_{n=1}^{\infty} F_n$ contains one and only one point. 5

(c) Show that a convergent sequence in a metric space is a Cauchy sequence. 4

UNIT–II

3. (a) Prove that a mapping $f : X \to Y$ is continuous on *X* if and only if $f^{-1}(G)$ is open in *X* for all open subsets *G* of *Y*. 5

- (b) Let (X, d) be metric space. Then show that the following statements are equivalent: 5
	- (i) (X, d) is disconnected
	- (ii) There exist two nonempty disjoint subsets A and B , both open in *X*, such that $X = A \cup B$.
	- (iii) There exist two nonempty disjoint subsets *A* and *B*, both closed in *X*, such that $X = A \cup B$.
	- (iv) There exists a proper subset of *X* that is both open and closed in *X*.
- (c) Let (X, d_v) and (Y, d_v) be two metric spaces and $f: X \to Y$ be uniformly continuous. If $\{x_n\}_{n\geq 1}$ is Cauchy in *X*, show that ${f(x_n)}_{n\geq 1}$ is also Cauchy in *Y*. 4
- 4. (a) Let (X, d) be metric space and let $x \in X$ and $A \subseteq X$ be nonempty. Prove that $x \in \overline{A}$ if and only if $d(x, A) = 0$. 5
	- (b) Let $T: X \to X$ be a contraction of the complete metric space (X, d) . Then prove that *T* has a unique fixed point. 5
	- (c) Let (X, d_X) and (Y, d_Y) be metric spaces, $\{f_n\}_{n\geq 1}$ a sequence of functions, each defined on *X* with values in *Y*, and let $f: X \rightarrow Y$. Suppose that $f_n \to f$ uniformly over *X* and that each f_n is continuous over *X*. Prove that *f* is continuous over *X*. 4

UNIT–III

5. (a) Prove that when the limit of a function $f(z)$ exists at a point z_0 , it is unique. 4 (b) Discuss the differentiability of the function $f(z) = |z|^2$. (c) Use Cauchy-Riemann equations for polar coordinates to show that $f(z) = \frac{1}{z^4} (z \neq 0)$ *z* $= \frac{1}{4}(z \neq 0)$ is differentiable and hence compute $f'(z)$. 5 6. (a) Show that the limit of the function $f(z) = \left(\frac{z}{z}\right)^2$

 $=\left(\frac{z}{\overline{z}}\right)^2$ as *z* tends to 0 does not exist. 4 (b) If a function $f(z)$ is continuous and nonzero at the point z_0 , then prove that $f(z) \neq 0$ throughout some neighbourhood of that point.

(c) Suppose that
$$
f(z) = u(x, y) + iv(x, y)
$$
, $z_0 = x_0 + iy_0$, and
\n $w_0 = u_0 + iv_0$. Prove that $\lim_{z \to z_0} f(z) = w_0$ if and only if
\n $\lim_{(x,y) \to (x_0, y_0)} u(x, y) = u_0$ and $\lim_{(x,y) \to (x_0, y_0)} v(x, y) = v_0$.

UNIT–IV

7. (a) Suppose that if a function $f(z)$ and its conjugate $\overline{f(z)}$ are both analytic in a given domain *D*, then show that $f(z)$ must be a constant.

5

4

- (b) Evaluate 2 $\int_{c} \frac{z+2}{z} dz$ $\int_{C} \frac{z+2}{z} dz$ where *C* is the semi circle $z = 2e^{i\theta} (\pi \le \theta \le 2\pi)$. 5
- (c) Show that e^z is entire. 4
- 8. (a) Evaluate the following: $2 \times 2 = 4$
	- (i) $\log(-1 i\sqrt{3})$
	- (ii) $(1 + i)^{i}$

(b) Without evaluating the integral, show that $\left| \int_{c} \frac{z^2 - 1}{z^2 - 1} \right| \leq \frac{2}{3}$ *dz* $\left| \int_C \frac{dz}{z^2 - 1} \right| \leq \frac{\pi}{3}$, where *C* is the arc of the circle $|z| = 2$ from $z = 2$ to $z = 2i$. 4

(c) State and prove the Cauchy integral formula. 6

UNIT–V

- 9. (a) State and prove the fundamental theorem of algebra, using Liouville's theorem. 5
	- (b) If a power series $\sum_{n=0} a_n (z z_0)$ $(z - z_0)^n$ *n* $\sum_{n=1}^{\infty} a_n (z-z)$ $\sum_{n=0} a_n (z - z_0)^n$ converges when $z = z_1 (z_1 \neq z_0)$, then show that it is absolutely convergent at each point ζ in the open disc $|z - z_0| < R_1$, where $R_1 = |z_1 - z_0|$. 5

(c) Represent the function $f(z) = \frac{z}{(z-1)(z-3)}$ by a series of negative powers of $(z-1)$ which converges to $f(z)$, when $0 < |z-1| < 2$. 4

10. (a) Suppose that $z_n = x_n + iy_n (n = 1, 2,...)$ and $S = X + iY$, then prove that $\sum_{n=1}^{\infty} z_n = S$ if and only if $\sum_{n=1}^{\infty} x_n = X$ and $\sum_{n=1}^{\infty} y_n = Y$.

- $n=1$ $n=1$ $n=1$ (b) If z_1 is a point inside the circle of convergence $|z - z_0| = R$ of a power series $\sum a_n(z-z_0)$ $\boldsymbol{0}$ $(z - z_0)^n$ *n* $\sum_{n=1}^{\infty} a_n (z-z)$ $\sum_{n=0} a_n (z - z_0)^n$, then prove that this series must be uniformly convergent in the closed disk $|z - z_0| \le R_1$, where $R_1 = |z_1 - z_0|$. 5
- (c) Represent the function $f(z) = \frac{4z+3}{z(z-3)(z+2)}$ $=\frac{4z+3}{z(z-3)(z+2)}$ in Laurent's series in the annular region between $|z| = 2$ and $|z| = 3$. 4
