2023

B.A./B.Sc. **Fourth Semester**

CORE - 10

MATHEMATICS

Course Code: MAC 4.31 (Ring Theory & Linear Algebra - I)

Total Mark: 70 Time: 3 hours

Pass Mark: 28

4

7

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Define integral domain and field and prove that every field is an integral domain. What can you say about the converse?	5
	(b)	Prove that the set $M_2(\mathbb{Z})$ of 2×2 matrices with entries in \mathbb{Z} is a ring under matrix addition and matrix multiplication.	55
	(0)	$(a+b)^2 = a^2 + b^2 + 2ab$, for all $a, b \in \mathbb{R}$.	1
2.	(a)	Define subring of a ring and show that the sum of two subrings of a ring R may not be a subring of R .	3
	(b)	Define characteristic of a ring and prove that the characteristic of an integral domain is either zero or a prime number.	5
	(c)	Give an example to show that the union of two subrings of a ring R may not be a subring of R and prove that the union of two subrings of a ring R is a subring of R if and only if one of them is contained in the	f
		other.	5
		UNIT–II	

3. (a) Define ideal of a ring and prove that every ideal of a ring R is a subring of R. Is the converse true? Justify.

(b) Define maximal ideal of a ring and prove that an ideal M of a commutative ring R with unity is a maximal ideal of R if and only if R/M is a field.

- (c) If J is an ideal of a ring R with unity such that $1 \in J$, then prove that J = R.
- 4. (a) If *I* and *J* are two ideals of a ring *R*, then prove that $1 + J = \langle I \cup J \rangle$.
 - (b) Define prime ideal of a ring and prove that an ideal P of a commutative ring R is a prime ideal of R if and only if R/P is an integral domain.

6 3

3

8

(c) If F is a field, prove that its only ideals are $\{0\}$ and F.

UNIT-III

- 5. (a) Define ring isomorphism. If *R* and *R'* are two rings and $f : R \to R'$ is an onto homomorphism, then prove that $R' \cong R / \ker f$, where ker *f* denotes the kernel of *f*. 6
 - (b) If \mathbb{C} denotes the field of complex numbers, show that the map $f:\mathbb{C}\to\mathbb{C}$ defined by f(x+iy) = x-iy, is a ring homomorphism.
 - (c) Prove that any homomorphism of a field is either injective or takes each element to zero. 4
- 6. (a) If R and R' are two rings and $f: R \to R'$ is a homomorphism, define kernel of f and prove that it is an ideal of R. 3
 - (b) If *R* and *R'* are two rings and $f : R \to R'$ is a homomorphism, prove that
 - (i) f(0) = 0 where 0 and 0' denote the zero elements of *R* and *R'* respectively.
 - (ii) f(-a) = -f(a) for all $a \in R$.
 - (c) Define embedding and prove that an integral domain can be embedded in a field.

UNIT-IV

7. (a) Prove that every linearly independent subset of a finitely generated vector space can be extended to form a basis. 5

- (b) If X and Y are subspaces of a finite dimensional vector space, prove that $\dim(X + Y) = \dim X + \dim Y - \dim(X \cap Y)$. 6
- (c) Let V be the vector space of functions from \mathbb{R} to \mathbb{R} . Show that $f, g, h \in V$ are linearly independent, where $f(x) = e^{2x}, g(x) = x^2, h(x) = x$.

3

4

6

- (b) If *V* is a finite dimensional vector space over a field *F* with dimension *n*, prove that any set with (n+1) or more vectors of *V*, is linearly dependent. 5
- (c) If the vectors (0, 1, a), (1, a, 1), (a, 1, 0) of the vector space $\mathbb{R}^{3}(\mathbb{R})$ are linearly dependent, then find the value of *a*.

UNIT-V

- 9. (a) Define rank and nullity of a linear transformation. State and prove the rank-nullity theorem. 8
 - (b) If the matrix representation of a linear transformation *T* on the vector space $\mathbb{R}^3(\mathbb{R})$ with respect to the basis {(1,0,0), (0,1,0), (0,0,1)} is

 $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix}$, what is the matrix representation of *T* with respect

to the basis $\{(0, 1, -1), (1, -1, 1), (-1, 1, 0)\}$?

10. (a) If
$$T : \mathbb{R}^3 \to \mathbb{R}^2$$
 is a map given by
 $T(x, y, z) = (x, y) \forall (x, y, z) \in \mathbb{R}^3$, show that *T* is a linear
transformation and also find the null space of *T*. 4

- (b) State and prove the first isomorphism theorem of linear algebra. 6
- (c) If T is a linear transformation on a vector space V over a field F such that $T^2 - T + 1 = 0$, then show that T is invertible. 4