- 1 -

2023

B.A./B.Sc.

Fourth Semester

 $CORE - 9$

MATHEMATICS

Course Code: MAC 4.21 (Riemann Integration & Series of Functions)

Total Mark: 70 Pass Mark: 28 Time: 3 hours

Answer five *questions, taking* one *from each unit.*

UNIT–I

- 1. (a) Let $f:[a,b] \to \mathbb{R}$ be bounded and $c \in (a,b)$. Let P_1 and P_2 be partitions of [*a*, *c*] and [*c*, *b*] respectively. Show that $P = P_1 \cup P_2$ is a partition of $[a, b]$. Also, show that $L(f, P) = L(f, P_1) + L(f, P_2)$ and $U(f, P) = U(f, P_1) + U(f, P_2)$.
	- (b) Let $f : [a,b] \to \mathbb{R}$ be bounded such that f^2 is integrable over [*a*, *b*], where $f^{2}(x) = \{f(x)\}^{2}$. Then *f* is integrable over [*a*, *b*]. Prove or disprove. 4
	- (c) Let $f: [-1,1] \to \mathbb{R}$ be defined by , if $-1 \le x < 0$ $(x) = \{0, \text{ if } x = 0$, if $0 < x \leq 1$ *a*, if $-1 \leq x$ $f(x) = \begin{cases} 0, & \text{if } x \end{cases}$ *b*, if $0 < x$ $=\begin{cases} a, & \text{if } -1 \leq x < 0 \\ 0, & \text{if } x = 0 \end{cases}$ $\begin{cases} b, & \text{if } 0 < x \leq \end{cases}$

2. (a) Let
$$
f:[a,b] \to \mathbb{R}
$$
 be defined by $f(x) = \begin{cases} k, & \text{if } x \text{ is rational} \\ -k, & \text{if } x \text{ is irrational} \end{cases}$
where $k \neq 0$. Is *f* integrable over $[a,b]$? Justify.

(b) Let $f:[a,b] \to \mathbb{R}$ be bounded and continuous. If $\int f(x)dx = 0$ *b a* $\int f(x)dx = 0$, prove that $f(c) = 0$ for at least one $c \in [a, b]$. ⁴

where $b < 0 < a$. Is *f* integrable over $[-1, 1]$? Justify. 6

(c) Let $f:(0,1) \to \mathbb{R}$ be defined by 0, if x is irrational $f(x) = \begin{cases} 1 \\ -1 \end{cases}$ if *x* $f(x) = \begin{cases} \frac{1}{x}, & \text{if } x = \frac{p}{x} \end{cases}$ q' q $\left| \right|$ $=\begin{cases} \frac{1}{q}, & \text{if } x = \end{cases}$

where $p, q \in N$ having no common factor. Show that f is integrable (0,1) and hence, evaluate 1 $\int_{0}^{x} f(x)dx$. 6

UNIT–II

3. (a) Let $f:[a,b] \to \mathbb{R}$ be integrable over [a, b] and let $c \in \mathbb{R}$. Prove that *cf* is integrable over [a, b] and $|(cf)(x)dx = c|f(x)|$ *b b* (b) Let $h: [a, b] \to \mathbb{R}$ be integrable over $[a, b]$. If $h(x) \ge 0$ for all $\int (cf)(x)dx = c \int f(x)dx$. 7

$$
x \in [a, b]
$$
, prove that $\int_{a}^{b} h(x) dx \ge 0$.

Hence, prove the following:

Let $f, g : [a, b] \to \mathbb{R}$ be integrable over [a, b]. If $f(x) \ge g(x)$ for

all
$$
x \in [a, b]
$$
, then $\int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx$. 5+2=7

- 4. (a) Let $f : [a,b] \to \mathbb{R}$ be bounded and monotone. Prove that *f* is integrable over $[a, b]$. 7
	- (b) Let $f : [a,b] \to \mathbb{R}$ be bounded. Suppose that f is continuous in [*a*, *b*] except at one point $c \in (a, b)$. Show that *f* is integrable over $[a, b]$. Hence, prove that *f* is integrable over $[a, b]$ if *f* has only finitely many points of discontinuity in $[a, b]$. $4+3=7$

UNIT–III

5. (a) For what values of $p \in \mathbb{R}$ does the integral $\int_{1}^{\infty} \frac{1}{x^p} dx$ 1 ∞ $\int \frac{1}{x^p} dx$ converge? Justify. 5

- (b) Prove that $\Gamma(a+1) = \Gamma(a)$ for $a > 0$. Deduce that $\Gamma(n+1) = n!$ for $n \in \mathbb{N}$. 4+1=5
- (c) Examine the convergence of 1 1 $(x^3(1+x^2))$ *dx* $x^3(1+x)$ $\int \frac{dx}{1+x^2}$ 4

6. (a) Show that
$$
\int_{0}^{\infty} x^{t-1} e^{-x} dx
$$
 is convergent for $t > 0$.

(b) For
$$
a, b > 0
$$
, show that $B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$.

(c) Examine the convergence of
$$
\int_{0}^{1} \frac{dx}{x^{\frac{1}{2}}(1-x)^{\frac{1}{2}}}
$$
 4

UNIT–IV

- 7. (a) Consider the sequence of functions $f_n : [0, \infty) \to \mathbb{R}$ defined by $\left(x\right)$ *n* $f_n(x) = \frac{x^n}{n + x^n}$ and $f: [0, \infty) \to \mathbb{R}$ defined by $(x) = \begin{cases} 0, & \text{if } 0 \leq x \leq 1 \\ 1, & \text{if } 0 \leq x \end{cases}$ 1, if $x > 1$ *x f x* $=\begin{cases} 0, & \text{if } 0 \leq x \leq \\ 1, & \text{if } x > 1 \end{cases}$ $\begin{cases} 1, & \text{if } x > 1 \end{cases}$ Prove that $f_n \to f$ pointwise on $[0, \infty]$. Does $f_n \to f$ uniformly on $[0, \infty)$? Justify. $5+1=6$
	- (b) Let $f : \mathbb{R} \to \mathbb{R}$ be uniformly continuous on \mathbb{R} . Consider the sequence of functions $f_n(x) = f\left(x + \frac{1}{n}\right)$. Show that $f_n \to f$ uniformly on $\mathbb R$. 4
	- (c) Let *a* > 0. Prove that the series of functions $\sum_{n=1}^{\infty} \frac{n(1 + nx^2)}{n(1 + nx^2)}$ *x n nx* $\sum_{n=1}^{\infty} \frac{x}{n(1 + nx^2)}$ is uniformly convergent on any interval $[a, b]$. $\qquad \qquad \text{4}$
- 8. (a) Let $X \subseteq \mathbb{R}$ and let $f_n : X \to \mathbb{R}$. Prove that (f_n) is uniformly convergent on *X* if and only if (f_n) is uniformly Cauchy on *X*. 7

(b) Let
$$
f_n
$$
, $f : [a,b] \to \mathbb{R}$ such that $\sum_{n=1}^{\infty} f_n = f$ uniformly on [a, b].
If each f_n is integrable over [a, b], prove that f is integrable over [a, b] and $\int_a^b f(x)dx = \sum_{n=1}^{\infty} \int_a^b f_n(x)dx$.

UNIT–V

9. (a) Let (a_n) be a bounded sequence of real numbers and let $L = \limsup a_n$. Prove that $4+3=7$ (i) there exists $N \in \mathbb{N}$ such that $a_n < L + \varepsilon$ for all $n \geq \mathbb{N}$ (ii) $L - \varepsilon < a_n$ for infinitely many *n*

(b) Suppose that the coefficients of the power series $\sum a_n x^n$ 0 *n* = integers and infinitely many of them are non-zero. Prove that the $\sum_{n}^{\infty} a_n x^n$ are all

radius of convergence of
$$
\sum_{n=0}^{\infty} a_n x^n
$$
 is at most 1.

(c) Determine the radius of convergence of the following power series:

(i)
$$
\sum_{n=0}^{\infty} \frac{2^n}{n!} x^n
$$
 (ii) $\sum_{n=0}^{\infty} \frac{n^3}{3^n} x^n$ 2+2=4

10. (a) Let $\boldsymbol{0}$ \int_{n} $(x-a)^n$ *n* $\sum_{n=1}^{\infty} a_n (x-a)$ $\sum_{n=0} a_n (x-a)^n$ be a power series whose coefficients $a_n \neq 0$ for all $n \geq 0$. If $\lim_{n \to \infty} \frac{a_{n+1}}{n}$ $\left| a_n \right|$ a_n *a a* + $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a} \right|$ exists, prove that the limit equals $\lim_{x \to \infty} |a_n|^{\frac{1}{n}}$. 7

(b) For
$$
x \in \mathbb{R}
$$
, prove that $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.

(c) Let $\mathbb R$ be the radius of convergence of the power series $\mathbf{0}$ *n n n* $\sum_{n=1}^{\infty} a_n x$ $\sum_{n=0} a_n x^n$. What can you say about the convergence of 0 *n n n* $\sum_{n=1}^{\infty} a_n x$ $\sum_{n=0} a_n x^n$ at $x = \mathbb{R}$? Justify. 4