2023

B.A./B.Sc.

Fourth Semester

CORE – 9

MATHEMATICS

Course Code: MAC 4.21 (Riemann Integration & Series of Functions)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Let $f:[a,b] \to \mathbb{R}$ be bounded and $c \in (a,b)$. Let P_1 and P_2 be partitions of [a,c] and [c,b] respectively. Show that $P = P_1 \cup P_2$ is a partition of [a,b]. Also, show that $L(f,P) = L(f,P_1) + L(f,P_2)$ and $U(f,P) = U(f,P_1) + U(f,P_2)$.
 - (b) Let $f : [a,b] \to \mathbb{R}$ be bounded such that f^2 is integrable over [a,b], where $f^2(x) = \{f(x)\}^2$. Then *f* is integrable over [a,b]. Prove or disprove.
 - (c) Let $f : [-1,1] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} a, & \text{if } -1 \le x < 0\\ 0, & \text{if } x = 0\\ b, & \text{if } 0 < x \le 1 \end{cases}$

where b < 0 < a. Is fintegrable over [-1, 1]? Justify.

2. (a) Let $f:[a,b] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} k, & \text{if } x \text{ is rational} \\ -k, & \text{if } x \text{ is irraxtional} \end{cases}$ where $k \neq 0$. Is fintegrable over [a,b]? Justify.

(b) Let $f : [a,b] \to \mathbb{R}$ be bounded and continuous. If $\int_{a}^{b} f(x)dx = 0$, prove that f(c) = 0 for at least one $c \in [a,b]$.

6

4

(c) Let $f:(0,1) \to \mathbb{R}$ be defined by $f(x) = \begin{cases} 0, & \text{if } x \text{ is irrational} \\ \frac{1}{q}, & \text{if } x = \frac{p}{q} \end{cases}$

where $p, q \in N$ having no common factor. Show that f is integrable (0,1) and hence, evaluate $\int_{0}^{1} f(x) dx$.

UNIT-II

3. (a) Let $f : [a,b] \to \mathbb{R}$ be integrable over [a,b] and let $c \in \mathbb{R}$. Prove that *cf* is integrable over [a,b] and $\int_{a}^{b} (cf)(x)dx = c\int_{a}^{b} f(x)dx$. 7

(b) Let $h:[a,b] \to \mathbb{R}$ be integrable over [a,b]. If $h(x)^a \ge 0$ for all $x \in [a,b]$, prove that $\int_{a}^{b} h(x) dx \ge 0$.

Hence, prove the following:

Let $f, g:[a,b] \to \mathbb{R}$ be integrable over [a,b]. If $f(x) \ge g(x)$ for

all
$$x \in [a,b]$$
, then $\int_{a}^{b} f(x)dx \ge \int_{a}^{b} g(x)dx$. $5+2=7$

7

5

- 4. (a) Let f:[a,b] → R be bounded and monotone. Prove that f is integrable over [a, b].
 - (b) Let f:[a,b] → R be bounded. Suppose that f is continuous in
 [a,b] except at one point c∈ (a,b). Show that f is integrable over
 [a,b]. Hence, prove that f is integrable over [a, b] if f has only finitely many points of discontinuity in [a,b].

UNIT-III

5. (a) For what values of $p \in \mathbb{R}$ does the integral $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ converge? Justify.

- (b) Prove that $\Gamma(a+1) = \Gamma(a)$ for a > 0. Deduce that $\Gamma(n+1) = n!$ for $n \in \mathbb{N}$. 4+1=5
- (c) Examine the convergence of $\int_{0}^{1} \frac{dx}{x^{\frac{1}{3}}(1+x^{2})}$ 4

6. (a) Show that
$$\int_{0}^{\infty} x^{t-1} e^{-x} dx$$
 is convergent for $t > 0$. 5

(b) For
$$a, b > 0$$
, show that $B(a, b) = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$. 5

(c) Examine the convergence of
$$\int_{0}^{1} \frac{dx}{x^{\frac{1}{2}}(1-x)^{\frac{1}{2}}}$$
 4

UNIT-IV

7. (a) Consider the sequence of functions $f_n : [0, \infty) \to \mathbb{R}$ defined by $f_n(x) = \frac{x^n}{n+x^n}$ and $f : [0, \infty) \to \mathbb{R}$ defined by $f(x) = \begin{cases} 0, & \text{if } 0 \le x \le 1 \\ 1, & \text{if } x > 1 \end{cases}$. Prove that $f_n \to f$ pointwise on $[0, \infty]$. Does $f_n \to f$ uniformly on $[0, \infty)$? Justify. 5+1=6

(b) Let $f : \mathbb{R} \to \mathbb{R}$ be uniformly continuous on \mathbb{R} . Consider the sequence of functions $f_n(x) = f\left(x + \frac{1}{n}\right)$. Show that $f_n \to f$ uniformly on \mathbb{R} .

4

- (c) Let a > 0. Prove that the series of functions $\sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}$ is uniformly convergent on any interval [a, b].
- 8. (a) Let $X \subseteq \mathbb{R}$ and let $f_n : X \to \mathbb{R}$. Prove that (f_n) is uniformly convergent on X if and only if (f_n) is uniformly Cauchy on X. 7

(b) Let
$$f_n, f : [a,b] \to \mathbb{R}$$
 such that $\sum_{n=1}^{\infty} f_n = f$ uniformly on $[a,b]$.
If each f_n is integrable over $[a,b]$, prove that f is integrable over
 $[a,b]$ and $\int_a^b f(x)dx = \sum_{n=1}^{\infty} \int_a^b f_n(x)dx$.

UNIT-V

9. (a) Let (a_n) be a bounded sequence of real numbers and let L = lim sup a_n. Prove that 4+3=7
(i) there exists N∈ N such that a_n < L+ε for all n≥ N
(ii) L-ε < a_n for infinitely many n

(b) Suppose that the coefficients of the power series $\sum_{n=0}^{\infty} a_n x^n$ are all integers and infinitely many of them are non-zero. Prove that the

radius of convergence of
$$\sum_{n=0}^{\infty} a_n x^n$$
 is at most 1. 3
(c) Determine the radius of convergence of the following power series:

(i)
$$\sum_{n=0}^{\infty} \frac{2^n}{n!} x^n$$
 (ii) $\sum_{n=0}^{\infty} \frac{n^3}{3^n} x^n$ $2+2=4$

10. (a) Let $\sum_{n=0}^{\infty} a_n (x-a)^n$ be a power series whose coefficients $a_n \neq 0$ for all $n \ge 0$. If $\lim_{x \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ exists, prove that the limit equals $\lim_{x \to \infty} |a_n|^{\frac{1}{n}}$.

(b) For
$$x \in \mathbb{R}$$
, prove that $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$.

3

4

(c) Let \mathbb{R} be the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n x^n$. What can you say about the convergence of $\sum_{n=0}^{\infty} a_n x^n$ at $x = \mathbb{R}$? Justify.