2023 B.A./B.Sc. **Fourth Semester** CORE - 8MATHEMATICS Course Code: MAC 4.11 (Numerical Methods)

Total Mark: 70 Time: 3 hours

Pass Mark: 28

7

Answer five questions, taking one from each unit.

UNIT_I

- (a) Define absolute error and relative error. 1. 2 (b) Obtain a second degree polynomial approximation to $f(x) = (1+x)^{\frac{1}{2}}$, $x \in [0, 0.1]$ using Taylor series expansion about x = 0. Use this expansion to approximate f(0.05). Also, find the bound of the truncation error. 5 (c) Design an algorithm to generate the Fibonacci sequence with *n* terms and draw the flow chart. 7
- 2. (a) Three approximate values of the number $\frac{1}{2}$ are 0.30, 0.33 and 0.34. Which of these three values is of the best approximation? 2 5
 - (b) List five important characteristics of a good algorithm.
 - (c) Design an algorithm to find the sum of the series $\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$, where *n* is a positive integer.

UNIT-II

3. (a) Given the equation $x^4 - x - 10 = 0$, determine the initial approximation to find the smallest positive root. Use regula-falsi method to find the root correct to three decimal places.

- (b) Define rate of convergence. Show that the rate of convergence for bisection method is linear.
- 4. (a) Perform five iterations on the bisection method to obtain the root of the equation $\cos x xe^x = 0$ in the interval [0, 1]. 7
 - (b) Perform five iterations of the Newton's method to obtain the approximate value of $17^{1/3}$ starting with the initial approximation $x_0 = 2$.

UNIT-III

7

7

5. (a) Solve the system of linear equation given in matrix form using Gaussian elimination method with partial pivoting

[2	1	1	-2]	$\int x_1^{-1}$		[-10]
4	0	2	1	x_2		8
3	2	2	0	x_3	=	7
1	3	2	-1	$\lfloor x_4 \rfloor$		$\begin{bmatrix} -10\\8\\7\\-5 \end{bmatrix}$

- (b) Prove that the necessary and sufficient condition for convergence of an iterative method of the form $X^{(k+1)} = HX^{(k)} + c$ is that the eigen values of the iteration matrix satisfies $|\lambda_i| < 1$. 7
- 6. (a) Find the necessary and sufficient condition of k for Gauss-Seidel method to converge for a system of equation AX=B, where

 $A = \begin{bmatrix} 1 & 0 & k \\ 2 & 1 & 3 \\ k & 0 & 1 \end{bmatrix}$ and *B* is arbitrary. Also, find the eigen values of the

iteration matrix for $k = \frac{1}{2}$ and rate of convergence of the method. 4+3=7

(b) Solve the system of equations

$$4x_1 + 2x_2 + x_3 = 4$$

$$x_1 + 3x_2 + x_3 = 4$$

$$3x_1 + 2x_2 + 6x_3 = 7$$

using Gauss-Jacobi method in error format. Perform three iterations using the initial approximation $X^{(0)} = \begin{bmatrix} 0.1 & 0.8 & 0.5 \end{bmatrix}^T$. 7

UNIT-IV

- 7. (a) Let $f(x) = \ln(1+x)$, $x_0 = 1$ and $x_1 = 1.1$. Use linear interpolation to calculate an approximate value of f(1.04) and obtain a bound on the truncation error. 5
 - (b) Evaluate $\Delta^3(1-x)(1-2x)(1-3x)$.
 - (c) The population of a country in the decennial census were under.

Year	<i>x</i> :	1941	1951	1961	1971	1981
Population (in Lakhs)	y:	46	67	83	95	102

Calculate the differences and obtain the polynomial using Gregory-Newton backward interpolation. Estimate the population for the year 1975. 7

8. (a) Prove the relation :

(i)
$$\mu = \sqrt{\frac{\delta^2}{4} + 1}$$

(ii) $\nabla = 1 - (1 + \Delta)^{-1}$

- (b) Prove that the n^{th} divided difference of a polynomial x^n is 1. 5
- (c) Using Lagrange's interpolation formula, prove that $y_1 = y_3 - 0.3(y_5 - y_{-3}) + 0.2(y_{-3} - y_{-5}).$ 4

UNIT-V

- 9. (a) Calculate by Boole's rule an approximate value of $\int_{3}^{-3} x^{4} dx$, taking five ordinates. 4
 - (b) Use Simpson's $3/8^{\text{th}}$ rule to obtain the value of $\int_0^1 \frac{dx}{1+x^2}$. 5

2

5

(c) Using Euler's method, find the approximate value of y at x = 0.1 in

five steps, given
$$\frac{dy}{dx} = x + y$$
 and $y(0) = 1$. 5

10. (a) A rocket is launched from the ground at time t = 0. Its acceleration *a* is registered during the first 80 seconds and is given in the table below:

t (sec)	0	10	20	30	40	50	60	70	80
$a (m/sec^2)$	30	31.63	33.34	35.47	37.75	40.33	43.25	46.69	50.67

7

Find the velocity of the rocket at time t = 80 seconds.

(b) Use Runge-Kutta fourth order method to solve $\frac{dy}{dx} = xy$ for x = 1.4. Initially x = 1, y = 2. (Take stepsize h = 0.2) 7