2023

B.A./B.Sc.

Second Semester

CORE – 3

COMPUTER SCIENCE

Course Code: CSC 2.11 (Data Structures)

Total Mark: 70 Pass Mark: 28

Time: 3 hours

Answer five questions, taking one from each unit.

		UNIT–I	
1.	, ,	Write program that creates a 3-dimensional array and displays the values of the array. State the differences between array and linked list.	3
		Explain the various operations on strings.	4
2.	(b) (c)	Explain data structures. Write down a brief classification of data structures. Write a program that represents a sparse matrix in triplet form. ARR is a 2-dimensional array with 10 rows and 5 columns. Each element occupies memory locations. If ARR [1][1] begins at address 300, find the location of ARR [4][3]. The arrangement of the elements is row-major.	2 3 5 ss
		UNIT-II	
3.		State any four advantages and any four disadvantages of stacks. Convert the infix expression into postfix expression: (A+B)*(C*D–E)*F/G.	8
	(c)	If the sequence of operations: push(1), push(2), pop, push(1), push(2), pop, pop, pop, push(2), pop are performed on a stack. What will be the sequence of popped out values?	2

4.	(b)	Evaluate the postfix expression: 344, 8, *, 10, 8, 2, /, -, +. Explain recursion using stack with example.	4 3 7			
		UNIT-III				
5.		State differences between static and dynamic memory allocation. Discuss skip list.	7 7			
6.	, ,	Write a subroutine to create a doubly linked list. What do you mean by self-organizing list? Explain the various methods in self-organizing list. 2+6=	6 =8			
UNIT-IV						
7.	(b)	Construct a binary search tree with the following elements: 11, 6, 8, 19, 4, 10, 5, 17, 43, 49, 31. Construct a binary tree from the traversal results: In-order traversal: 4, 2, 1, 7, 5, 8, 3, 6 Pre-order traversal: 1, 2, 4, 3, 5, 7, 8, 6 Explain three cases while inserting a node in threaded binary tree.	4 4 6			
8.	(b)	Write down steps to construct an AVL tree. Explain perfect binary tree and full binary tree. Explain deletion of node with 2 children in binary search tree.	4 4 6			
		UNIT-V				
9.	(b)	State differences between linear and binary search operations. Write algorithm for selection sort. Explain logarithmic time and linear time complexity.	5 5 4			
10.	(b)	Write algorithm for insertion sort. Sort the numbers in ascending order using bubble sort: 29, 25, 20, 19, 11, 24, 27, 31 Write the best case time complexity of insertion sort, selection sort,	5 6			
		and merge sort.	3			