-1-

(a) Distinguish the terms. 1. $3 \times 3 = 9$ (i) Enthalpy of formation and standard enthalpy of formation (ii) Thermochemical reactions and photochemical reactions (iii) Integral and differential enthalpies (b) Explain how the enthalpy of a reaction varies with temperature? 5 2. (a) Write short notes on the following: $3 \times 2 = 6$ (i) Third law of thermodynamics (ii) Bond dissociation energy (iii) Resonance energy (b) Explain the origin of enthalpy in a chemical reaction. 3 (c) Calculate the enthalpy of the following thermochemical reaction with the given data: 5 CH₂ CH₃ $+ H_2(g) \rightarrow |$ $CH_2(g)$ $CH_3(g)$ Bond energy of various bonds are as follows: C-H = 416.20 KJ

Answer five questions, taking one from each unit.

C-C = 347.30 KJC=C = 615.00 KJ

UNIT_I

GENERIC ELECTIVE – 4 CHEMISTRY

Fourth Semester

Course Code: CHG 4.11 (Physical Chemistry for Biosciences)

Total Mark: 70 Time: 3 hours

2023 B.A./B.Sc.

Pass Mark: 28

UNIT-II

3.	(a) Explain the influences of changes in pressure, temperature, and		
		concentration in the dynamic nature of a chemical equilibrium.	4
	(b)	Give the thermodynamics derivation of law of mass action and the	ne
		equilibrium constant.	4
	(c)	What is Le Chatelier's principle?	2
	(d)	Derive the relationship between K_p and K_c .	4
4.	(a)	Write short notes on the following: 22	×4=8
		(i) Halflife period	
		(ii) Van't Hoff method for determining the order of reaction	
		(iii) Photochemical reaction/Zero order reaction	
		(iv) Pseudo order reaction	
	(b)	Trimolecular reaction is very rare. Why?	2
	(c)	Explain the concept of activation energy in chemical kinetics and	lits
		importance in terms of Arrhenius equation.	4
UNIT-III			

5.	(a)	Determine the ionization of a weak base and correlate the degr	ree of
		ionization of base with dilution.	5
	(b)	Write short notes on the following:	2×2=4
		(i) Ionic product of water (ii) pH of a solution	
	(c)	Establish the relation between degree of hydrolysis 'h' and pH	for a
		salt solution of strong acid and weak base.	5
6.	(a)	Discuss the ionization of a weak acid and establish the relation	
		between the degree of ionization of acid with dilution.	5
	(b)	Write a note on dissociation constant of monoprotic acid and	
		diprotic acid with relevant equation.	4
	(c)	Establish the relation between degree of hydrolysis 'h' and 'pH	['
		for a salt of weak acid and strong base.	5

UNIT-IV

7.	(a) Explain the following term	2×3=6	
	(i) Component	(ii) Degree of freedom	
	(iii) Eutectic point		

	(b)	Describe the nature of phase diagram of ethanol water system in	
		terms of Gibbs phase rule.	5
	(c)	Distinguish the terms phase equilibrium and metastable equilibrium.	3
8.	(a)	Explain the typical phase diagram of a two component system in	
		terms of various equilibria involved in it.	6
	(b)	What are the special properties of an "ideal liquid mixture"?	3
	(c)	Explain the nature of metastable equilibria involved in sulphur	
		system.	3
	(d)	"Number of phases governs the nature of phase diagram in a	
		heterogenous equilibria." Explain.	2

UNIT-V

9.	(a)	Write short notes on the following:	2×3=6
		(i) Electrical transport (ii) Specific conductivity	
		(iii) Migration of ions	
	(b)	The resistance of 0.01 N NaCl solution at 298 K is 200 ohm.	The
		cell constant of the conductivity cell is unity. Calculate the equiv	valent
		conductance.	3
	(c)	How does equivalent conductance vary with dilution?	3
	(d)	What is the relationship between transport number and the mole	oility
		of ions in a solution?	2
10.	(a)	Explain the phenomena of fluorescence and phosphorescence	in
	()	terms of Jablonski diagram.	4
	(b)	What is the Stark-Einstein law of photochemical equivalance?	
		Explain in detail.	5
	(c)	Calculate the energy of one photon of light with wavelength 24	450 Å.
		Will it be able to dissociate a bond in diatomic molecule which	
		absorbed this photon and has a bond energy equal to 95 kcal/n	nol?
			3
	(d)	Distinguish the terms singlet and triplet excited states.	2