2023 B.A./B.Sc. Fourth Semester CORE – 10 CHEMISTRY Course Code: CHC 4.31 (Physical Chemistry - IV)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions taking one from each unit.

UNIT-I

- (a) Give the postulates of Arrhenius theory of ionization. Discuss the limitations of Arrhenius' theory.
 - (b) What is meant by molar conductivity? Establish its relationship with specific conductivity. 3
 - (c) The conductivity of a solution containing 1 gram of anhydrous $BaCl_2$ in 200 cm⁻¹. What are the molar conductivity and equivalent conductivity of the solution? (At. wt. of Ba = 137 and Cl=35.5) 4
- 2. (a) Define transport number of an ion. Describe Hittorf's method for the determination of transport number. 1+6=7
 - (b) What is meant by transference number? How does it relate with ionic mobility? 3
 - (c) During the electrolysis of a solution of potassium chloride between platinum electrode, 0.0137 g of the chloride was lost from anodic compartment and 0.0857 g of silver was deposited in a silver coulometer connected in series with the cell. Determine the transport number of K^+ and Cl^- ions.

UNIT-II

3. (a) What is meant by EMF of a cell? How is it measured? 1+5=6
(b) Describe the application of electrolysis in metallurgy and industry. 4

(c) Calculate the standard EMF of a cell which involves the following cell reaction. $Zn + 2Ag^+ \rightarrow Zn^{2+} + 2Ag$ Given that $E^0_{Zn,Zn^{2+}} = 0.76$ volt and $E^0_{Ag,Ag^+} = -0.80$ volt

4

6

4

4

- 4. (a) Discuss the theory of an apparatus used for polarography.
 - (b) Derive Nernst equation for the calculation for the potential of hydrogen-electrode.
 - (c) Calculate the electrode potential (reduction potential) of each of the following single electrode at 25° C.

(i)
$$\operatorname{Sn} / \operatorname{Sn}^{++}(a = 0.01) \operatorname{E}^{0}_{\operatorname{Sn}^{++} \operatorname{Sn}} = 0.14 \operatorname{V}$$

(ii) Ag / AgCl(s), Cl⁻ (a = 0.0001)
$$E^0_{AgCl,Cl^-} = 0.22V$$

UNIT-III

5.	(a)	Discuss the ionization of a weak base and establish the relation	
		between the degree of ionization with dilution.	5
	(b)	Explain ionic product of water and pH of a solution.	4
	(c)	Establish the relation between degree of hydrolysis <i>h</i> and pH for a	
		salt of strong acid and weak base.	5
6.	(a)	Discuss the ionization of a weak acid and establish the relation	
		between the degree of ionization with dilution.	5
	(b)	Derive the dissociation constant of monoprotic and diprotic acid.	4
	(c)	Establish the relation between degree of hydrolysis h and 'pH' for a	l
		salt of weak acid and strong base.	5
		UNIT-IV	
7.	(a)	Derive the expression of the energies of rotational levels for diatomi	c
		molecules taking it as a rigid rotator.	6
	(b)	State and explain the selection rules for rotational and vibrational	
		spectra.	4

- (c) Describe Morse potential energy curve for higher amplitude of vibration.
- 8. (a) Give the expression of vibrational-rotational spectra for a diatomic molecules taking it as a anharmonic oscillator. 5

(b)	"Pure rotational spectra are also known as microwave spectr			
	Why? Explain one application of microwave spectroscopy.	2+3=		

=5 4 (c) Write a note on "concept of group frequencies."

UNIT-V

9.	(a)	Discuss how to determine the dielectric constant of different	
		materials.	6
	(b)	Define dipole moment. Explain the measurement of dipole mo	ment
		by refractive method.	1+3=4
	(c)	Write a note on the following:	2×2=4
		(i) Bond moment	
		(ii) Electrostatic of dielectric	
10.	(a)	What is magnetic susceptibility? Describe the method of	
		measurement of magnetic susceptibility.	1+5=6
	(b)	The bond angle in H ₂ O is 104.5° and the dipole moment is 1.	.85 D.
		Calculate the bond moment for the O-H bond.	
		Given: $\cos 52.25^\circ = 0.6129$.	2
	(c)	Write short notes on the following:	2×3=6
		(i) Diamagnetism	
		(ii) Paramagnetism	
		(iii) Ferromagnetism	