2023 B.A./B.Sc. Second Semester CORE – 4 CHEMISTRY Course Code: CHC 2.21 (Physical Chemistry - II)

Total Mark: 70 Time: 3 hours Pass Mark: 28

4

Answer five questions, taking one from each unit.

UNIT-I

- (a) State and give the mathematical expression for the first law of thermodynamics.
 (b) What do you understand by heat capacities of a system? Explain the
 - (b) What do you understand by heat capacities of a system? Explain the two type of heat capacity of a system. 1+3=4
 - (c) Calculate the pressure-volume and work performed by the system during reversible isothermal expansion of two moles of ideal gas from 2 litres to 10 litres at 20°C.
 - (d) Write short notes on the following: $1\frac{1}{2}\times2=3$
 - (i) Internal Energy
 - (ii) Enthalpy
- 2. (a) What is spontaneous process? Give the criteria for spontaneity of a process. 1+3=4
 - (b) Derive the expression for maximum work obtainable from isothermal reversible process. 5
 - (c) What do you understand by statistical interpretation of entropy? 2
 - (d) Calculate the ΔE and ΔH on heating 64.0 g of oxygen from 0°C to 100°C when the values of C_v and C_p are 5.0 and 7.0 cal/mol respectively.

UNIT-II

3. (a) What is residual entropy? Explain.

3

	(b)	What is heat of reaction? Derive the Kirchoff's equation.	1+4=5
	(c)	The standard heat of formation of $C_2H_5OH(l)$, $CO_2(g)$ and H	[,O(l)
		are: -277.0, -393.5 and 285.5 kJ/mol respectively. Calculate	the
		standard heat change for the reaction.	3
	(d)	Write a note on endothermic and exothermic reaction.	3
4.	(a)	Explain heat of combustion with examples. What are the applic	cations
		of heat of combustion?	2+3=5
	(b)	Define bond energy. Explain the parameters in which the bond	
		energy depends.	1+3=4
	(c)	Given that energies for H–H, O=O and O–H are 104, 118, an	ıd
		111 kcal/mol respectively. Calculate the heat of reaction.	4
	(d)	Give the statement of third law of thermodynamic.	1

UNIT-III

(a) What is Helmholtz and Gibbs free energy? Explain their significa		icance.
		2+4=6
(b)	Derive the expression for variation of Gibbs free energy change	ge with
	temperature and pressure.	5
(c)	Write a note on Joule-Thomson coefficient.	3
(a)	What is inversion temperature? Explain how Joule-Thomson	
	coefficient is related to other thermodynamic parameters?	1+5=6
(b)	Derive the expression for Gibbs-Helmholtz equation.	3
(c)	Write a note on chemical potential of ideal mixtures.	5
	 (a) (b) (c) (b) (c) 	 (a) What is Helmholtz and Gibbs free energy? Explain their signif (b) Derive the expression for variation of Gibbs free energy change temperature and pressure. (c) Write a note on Joule-Thomson coefficient. (a) What is inversion temperature? Explain how Joule-Thomson coefficient is related to other thermodynamic parameters? (b) Derive the expression for Gibbs-Helmholtz equation. (c) Write a note on chemical potential of ideal mixtures.

UNIT-IV

7.	(a) (b) (c)	What are the criteria of thermodynamic equilibrium? Thermodynamically, derive the expression for equilibrium constant. State Le Chatelier principle. Explain the effect of temperature and pressure on the state of equilibrium with examples. 1+4	3 . 6 =5
8.	(a) (b)	What do you meant by degree of advancement of a chemical reaction? Derive the thermodynamic relation between Gibbs free energy of reaction and reaction quotient.	3

(c) Explain and derive how K_p , K_c and K_x are related to one another.

5

UNIT-V

9.	(a)	What is meant by colligative properties? Show how molar mass	ofa
		non-volatile solute can be determine from lowering of vapour	
		pressure. 1	+4=5
	(b)	0.5 g of non-volatile solute of molar mass 60.0 g mol ⁻¹ is dissolved	ed in
		100 g of ethyl acetate at 20°C. What would be the vapour pres	sure
		of this solution at 20°C? The vapour pressure of ethyl acetate at	
		20°C is 72.8 torr.	4
	(c)	Considering two pure components say A and B forming ideal	
		solution. Calculate the free energy change on mixing.	5
10.	(a)	Define chemical potential. Determine the elevation of boiling of a	ì
		liquid (T_{h}) in terms of chemical potential when a non-volatile sol	ute is
		added to a solvent. 1	+6=7
	(b)	How many gram of sugar (mol. wt. 342) may be dissolved in 50)0 g
		of water so as to have an elevation in boiling point of 0.13°C?	
		(Given K_{b} of water = 0.52 K.Kg ⁻¹ mol ⁻¹).	4
	(c)	State and explain Raoult's law.	3