2023 B.A./B.Sc. Second Semester CORE – 3 CHEMISTRY Course Code: CHC 2.11 (Organic Chemistry - I)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	a) What is hybridization? What are the distinguishing features of sp ³	
		sp ² orbitals? Explain with examples.	+3=4
	(b)	Explain briefly how a carbonium ion, carbanion ion, and free rad	lical
		are obtained.	3
	(c)	What is mesomeric effect? Give an example of a system where t	his
		effect is operative.	3
	(d)	Differentiate between electrophilic substitution and nucleophilic	
		substitution reaction.	4
2.	(a)	Write the chemical formula for the compound having IUPAC nat	me
		as: 1:	×2=2
		(i) 4-Methylpent-2-ene	
		(ii) 2-Chlorobutanedioic acid	
	(b)	What is nucleophilicity? Arrange the following halide ions in terr	ns of
		decreasing nucleophilicity in aqueous medium:	
		F [−] , Cl [−] , Br [−] , I [−]	3
	(c)	Write note on the following: 22	×3=6
		(i) Hyperconjugation	
		(ii) Dipole moment	
		(iii) Carbenes	
	(d)	Explain why ethyl carbocation is more stable than methyl	
		carbocation.	3

UNIT-II

3.	(a)	Define conformation. Draw the potential energy diagram of buta and predict the most stable conformer.	ne +4=5
	(b)	What is geometrical isomerism? Draw the E and Z isomer of the	e
		compound BrIC=CFCl.	3
	(c)	What is resolution? How will you resolve a racemic mixture by	2
	(1)	chemical method?	3
	(d)	Explain Fischer's projection with suitable example.	3
4.	(a)	Write note on the following: 2	×2=4
		(i) Optical activity	
		(ii) Specific rotation	
	(b)	Discuss the relative (D and L) configuration with an example.	3
	(c)	Predict whether 3-chlorohexane will be optically active or not?	Give
		reason.	3
	(d)	Differentiate between enantiomerism and diastereoisomerism with	th
		example.	4
		UNIT-III	
5.	(a)	What is Wurtz-Fittig reaction? Give the chemical reaction.	3
	(b)	Write the reaction with mechanism of hydroboration-oxidation	
		reaction.	3
	(c)	Explain the following statements: 2	×2=4
		(i) A branched chain hydrocarbon boils at lower temperature the straight chair isomer.	han a
		(ii) More highly alkylated alkenes are more stable.	
	(d)	Explain the allylic bromination reaction with mechanism using N	RS
	(u)		4
6.		Explain Saytzeff's rule with an example.	3
	(b)		×2=4
		(i) 1, 3-butadiene is treated with bromine in a polar solvent	
		(ii) Propanol is heated with conc. H_2SO_4 at 170°C	
	(c)	Describe the mechanism of addition of HBr to propene in present	nce
		of an organic peroxide.	4
	(d)	Using a suitable example, explain Diel's Alder reaction with	
		mechanism.	3

UNIT-IV

7.	(a)	Give a brief explanation on the acidity of terminal alkynes.	3
		Predict the products of the following reactions: $2 \times 2 =$	4
		(i) $CH \equiv CH + C_2H_5OH \xrightarrow{KOH} \rightarrow$	
		(ii) $CH_3 - C \equiv CH + H_2O \xrightarrow{H_2SO_4/HgSO_4} \rightarrow$	
	(c)	There is no strain in either chair or boat form in cyclohexane. Why	
		then the chair conformation is more stable than the boat	
		conformation?	3
	(d)	Justify with example why acetylene undergoes electrophilic as well a	
		nucleophilic addition reactions?	4
8.	(a)	Discuss the relative stability of chair, boat and twist conformers of	
		e je se	4
	(b)	How will you bring about the following conversions? $2 \times 2 =$	
		(i) Acetylene into oxalic acid (ii) Propyne into dibromopropane	9
	(c)	What is the reason for the low reactivity of alkynes towards	2
	(d)	1	3
	(u)	what are eyeloaikalles. Give the unreferit types of eyeloaikalles.	5
		UNIT-V	
9.	(a)	Why is –NO ₂ group meta-orienting while –NH ₂ group is ortho and	
		para-orienting?	3
			4
	(c)	What is Huckel's rule for aromaticity? Give one example each of	
		both aromatic and non-aromatic compounds based on Huckel's rule	
	(d)	Explain with example why aromatic compounds undergo substitution	3
	(u)		4
10	(a)	·	
10.	(a)	Halogens are electron withdrawing in nature but they are ortho and para directing in benzene. Explain.	3
	(h)		3 4
		Out of toluene and nitro benzene, which will be nitrated more easily	•
	. /	-	3

(d) Give the mechanism of halogenations of benzene.

4