2022

M.Sc.

Fourth Semester

DISCIPLINE SPECIFIC ELECTIVE – 03

MATHEMATICS

Course Code: MMAD 4.11 (Differential Geometry of Manifolds)

Total Mark: 70 Time: 3 hours Pass Mark: 28

8

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Define tangent space and vector field and prove that the tangent space $T_p(M)$ on an n-dimensional C^{∞} manifold M_n at x is an *n*-dimensional vector space over \mathbb{R} . 2+2+4=8
 - (b) Define Jacobian map and prove that if $\Phi: M_n \to M_m$ is C^{∞} and X, Y are C^{∞} vector fields on M_n then [X,Y] is Φ -related. 3+3=6
- 2. (a) Let Φ and Ψ are given by $3 \times 2=6$
 - (i) $\Phi = xdx ydy$, $\Psi = zdx + xdz$ and let $\theta = zdy$, then compute $\theta \land \Phi \land \Psi$
 - (ii) $\Phi = 6dx \wedge dy + 27dx \wedge dz$, $\Psi = dx + dy + dz$ then compute $\Phi \wedge \Psi$.
 - (b) Define exterior derivative. If A is an *r*-form such that

 $A = A_{i_1...,i_r} dx^{i_i} \wedge \wedge dx^{i_r}$, then prove that $dA = \partial_j A_{i_1...,i_r} dx^j \wedge dx^{i_i} \wedge \wedge dx^{i_r}$ and if $A \in V_{\wedge r}$ (set of all C^{∞} *r*-form), then show that dA is skew symmetric.

UNIT-II

- 3. (a) Define Lie group and Lie algebra in detail and prove that the vector space ℝ³ with the operation cross product of vectors is a Lie algebra.
 - (b) Define one-parameter subgroups and exponential maps. Let A and B be an infinitesimal transformations of $R_{g(t)}$ and $L_{g(t)}$ respectively. Then show that A is left invariant and B is right invariant, and $A_e = B_e = g(0)$ holds where g(0) is the tangent vector to the curve g = g(t) at g(0).
- 4. (a) Suppose f: G → H is a Lie group homomorphism. Then prove that the induced map f_{*}: T_e(G) → T_{e'}(H) is a homomorphism between the Lie algebras of the groups. If f is a Lie group isomorphism, then f_{*} is an isomorphisms between the Lie algebras, where

$$e' = f(e) \in H$$
 for $e \in G$.

(b) Define induced bundle and associate bundle and show that the tangent bundle T(M) and the tensor bundle T^r_s are the associate bundles of L(M).

UNIT-III

- 5. (a) Define Linear connection and prove that $\Gamma_z^{\ h}$ is isomorphic to the tangent space T_x of M_n at $x = \Pi_L(z)$ by the differential map Π_{L^*} of the projection Π_L 7
 - (b) Define Torsion and curvature form and then state and prove the Bianchi identities for a linear connection.
- 6. (a) State and prove Ricci identity.

7

6

(b) If L_X denotes the Lie derivative then prove that

(i)
$$L_{X+Y} = L_X + L_Y$$

(ii) $L_X L_Y - L_Y L_X = L_{[X,Y]}$
8

UNIT-IV

7.	(a)	Write in brief the definitions of Riemannian manifold and Riemannian	1
		connection. Let (M, g) be a Riemannian manifold of dimension n	
		with the Levi-Civita connection \overline{D} . If the manifold admits another metric connection D with nonvanishing torsion T, then prove that for	r
		any $X, Y, Z \in \mathcal{F}(M)$, we have	
		$D_X Y - \overline{D}_X Y = \frac{1}{2} \left[T(X, Y) + T'(X, Y) + T'(Y, X) \right], \text{ where}$	
		g(T(Z,X),Y) = g(T'(X,Y),Z)	8
	(b)	Define curvature tensor and state and prove only second Bianchi's identity.	6
8.	(a)	Define Ricci tensor and show that it is symmetric.	4
	• •	State and prove Schur's theorem.	5
	(c)	Show that a necessary and sufficient condition that a Riemannian	
		manifold M_n is of constant curvature is that it is projectively flat.	5
		UNIT-V	
9.	(a)	Discuss in detail the submanifolds of a manifold.	6
	(b)	Define induced connection. If $BD_X Y$ is the tangential component of	•
		$\overline{D}_{BX}BY$, then prove that D is a covariant derivative.	4

(c) State and prove Gauss formula related to the submanifold. 4

10. (a) Define lines of curvature and principal directions for a curve on a submanifold, and prove the necessary and sufficient condition that the

covariant derivative of a normal vector to a submanifold along a curve in it be tangent to the curve is that the curve is a line of curvature.

7

(b) Define mean curvature of a submanifold and prove that the mean

curvature vector field is $\sum_{v=n+1}^{m} (C_1^1 H v) N v$ which is invariant of N v

and show that Mv = -divNv, where M is the mean curvature vector of the submanifold M_n 7