2022 M.Sc. Fourth Semester CORE – 12 MATHEMATICS Course Code: MMAC 4.21 (Rings & Modules)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Prove that every field is a division ring and every division ring is an integral domain but not conversely.	4
	(b)	If R and S are two rings, prove that R×S is also a ring under coordinatewise addition and multiplication.	6
	(c)	If R is a commutative ring with 1, prove that $A \in M_n(R)$ is a unit if	
		and only if its determinant det(A) is a unit in R	4
2.	(a)	Define local ring and prove that the characteristic of a local ring is either 0 or a power of a prime.	4
	(b)	Define endomorphism ring of an abelian group G, $End_{\mathbb{Z}}G$ and prove	/e
		that $End_{\mathbb{Z}}G$ is a ring under pointwise addition and composition of	
		maps.	6
	(c)	Prove that the product of two left ideals of a ring R is also a left idea of R.	ıl 4

UNIT-II

3. (a) Define unitary module and prove that unitary modules over Z are simply abelian groups.
5

	(b)	For an abelian group M, let $\operatorname{End}_{\mathbb{Z}}(M)$ be the ring of all additive	
		endomorphisms of M. If R is any ring, then prove that M is a left R-module if and only if there exists a homomorphism of rings	
		$\psi: \mathbf{R} \to \mathrm{End}_{\mathbb{Z}}(\mathbf{M})$	6
	(c)	Prove that the sum of two submodules of a module M is also a submodule of M.	3
4.	• •	State and prove the Epimorphism theorem for modules. Prove that M is a left R-Module if and only if M is a right R ^{op} - module, where R ^{op} is the ring opposite to R.	6 5
	(c)	If M and N are R-modules and $f: M \rightarrow N$ is a module homomorphism, define kernel of f and show that it is a submodule o M.	of 3

UNIT-III

5.	(a)	If R is a ring and M, N are left R-modules, prove that the Cartesian	L
		product M×N is also a R-module.	6

(b) If R is an integral domain and M is an R-module, show that the set T consisting of the torsion elements of M is a submodule of M and the

quotient module
$$\frac{M}{T}$$
 is torsion-free. 6

5

6

(c) Show that the
$$\mathbb{Z}$$
 -module $\frac{\mathbb{Z}}{n\mathbb{Z}}(n > 1)$ is not projective. 2

- (b) Prove that an R-module P is projective if and only if every exact sequence of the form $0 \rightarrow M' \rightarrow M \xrightarrow{P} P \rightarrow 0$ splits.
- (c) Prove that an R-module P is projective if and only if P is isomorphic to a direct summand of a free R-module.3

UNIT-IV

7.	a) If $\{E_i\}_{i \in I}$ is a family of R-modules, prove that $\prod_{i \in I} E_i$ is injective	if
	and only if each E _i is injective.	6
	b) Prove that every injective module is divisible.	4
	c) State and prove Schur's lemma.	4
8.	a) Prove that an R-module Q is injective if and only if every exact	
	sequence of the form $0 \rightarrow Q \xrightarrow{u} M \rightarrow M'' \rightarrow 0$ splits.	6
	b) If the \mathbb{Z} -module Q is injective, prove that the left R-module	
	Hom _{\mathbb{Z}} (R,Q) is injective.	4
	c) Prove that every quotient of a semi-simple module is semi-simple	e. 4
	UNIT-V	
9.	a) Define Artinian module. If a module M is such that it has a	
	submodule N with both N and $\frac{M}{N}$ Artinian, prove that M is Arti	nian.
		5
	b) Prove that a module is of finite length if and only if it is both Artin and Noetherian.	ian 5
	c) Prove that a quotient ring of an Artinian ring is Artinian whereas a	a
	subring of an Artinian ring need not be Artinian.	4
10.	a) Prove that sums and direct sums of finitely many Noetherian mod are Noetherian.	lules 5
	b) Define Nil Radical and Jacobson Radical. Prove that	C
	$J_{\ell}(R) = \{x \in R : 1 - yx \text{ is a unit } \forall y \in R\}, \text{ where } J_{\ell}(R) \text{ denotes } $	es
	the left Jacobson Radical.	5
	c) Prove that matrix rings over Noetherian rings with unity are	2
	Noetherian.	4