2022 M.Sc. Fourth Semester CORE - 11 PHYSICS Course Code: MPHC 4.11 (Computational Physics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Round off the numbers 865260 and 37.46235 to four significantfigures and compute absolute, relative and percentage error.7
 - (b) Find the root of the following equation correct to 3 decimal places by using bisection method: $x^3 x 4 = 0$ 7

2. (a) Use Newton-Raphson method to obtain a root correct to three decimal place of the following equation: $x^3 - 5x + 3 = 0$ 7

(b) Find the number of terms of the exponential series such that their sum gives the value of e^x correct to six decimal places at x = 1. 7

UNIT-II

3. (a) Solve the following set of equations for five iterations using Jacobi's method:

$$2x + 3z = 4$$

$$5y + 2z = 3$$

$$5x + 4y + 10z = 2$$

$$7$$

(b) Find the eigenvalues and eigenvectors of the matrix $\begin{vmatrix} 1 & 4 \\ 3 & 2 \end{vmatrix}$ 7

4. (a) Solve the following set of equations by Gauss-Jordan method.

$$x + y + z = 9$$

$$2x - 3y + 4z = 13$$

$$3x + 4y + 5z = 40$$

7

(b) Find the eigenvalues and eigenvectors of the matrix $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$ 7

UNIT-III

5. (a) The velocity 'u' of water flowing over flat surface is measured at several distance 'y' away from the surface. Fit the curve

 $u = ay^2 + by + c$ by using least square criteria.

y(cm)	0	1	2	3	4
u(m/s)	0	5	15	30	50

(b) Find the polynomial f(x) by using Lagrange's formula and hence

find $f(3)$ for	Х	0	1	2	3
	f(x)	2	3	12	147

6. (a) The dynamic viscosity of water $\mu (10^{-3} Ns / m^2)$ is related to the temperature T(°C) in the following manner:

Т	0	5	10	15	20	25	30
μ	1.787	1.519	1.307	1.170	1.002	0.8990	0.7975

By using least square criteria, fit above data points in parabolic equation.

(b) In the table below, the values of y are consecutive terms of a series. Find the value of y for x = 1 and x = 10 using Newton's interpolation formula.

7

X	3	4	5	6	7	8	9
у	4.8	8.4	14.5	23.6	36.2	52.8	73.9

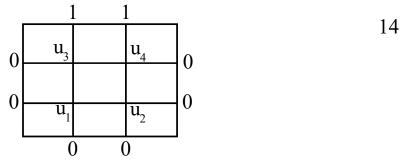
UNIT-IV

7. (a) Estimate the value of $\int_{\frac{\pi}{4}}^{\frac{3\pi}{8}} sin x dx$ using trapezoidal rule with strip

width
$$\frac{\pi}{32}$$
 and number of strips 6. 8

(b) Estimate
$$\int_{0}^{1} \frac{1}{x+2} dx$$
 using Gauss quadrature two point formula. 6

8. Estimate the integration $f(x) = \int_{2.2}^{3.4} (x^3 - 2x^2 + 7x - 5) dx$ assuming 8


strips using Simpson's 1/3 rule and compare the result for errors with the analytical solution. 14

UNIT-V

9. (a) Find
$$y(2.2)$$
 by using Euler's method for $\frac{dy}{dx} = -xy^2$, where
 $y(2) = 1$ with $h = 0.1$.

(b) Solve $\frac{dy}{dx} = -2xy^2$ with y(0) = 1 and h = 0.01 for interval 0 to 0.5, using Runge-Kutta 4th order method. 6

10. Solve
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
 for the following figure by Gauss-Sidel method.

