2022 M.Sc. Second Semester CORE – 07 PHYSICS Course Code: MPHC 2.31

(Nuclear & Particle Physics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Discuss the disparity in the value of cross-section of singlet and trip	olet
	(1.)	states.	0
	(b)	For a given point charge outside the nucleus, derive the expression	1
		for nuclear quadrupole moment.	8
2.	(a)	Estimate the radius of hydrogen ${}^{1}_{1}$ H if the measured radius of lithiu	ım
		${}_{3}^{8}$ Li is found to be 2.4 fm.	4
	(b)	Highlight the main properties of deuteron and hence estimate the depth and size of square well potential.	10

UNIT-II

3. (a) Prove that for Compton scattering at the angle 0° , the recoil

electrons are emitted at angle $\frac{\pi}{2}$. 4

- (b) Explain Fermi theory of beta decay in detail. Hence, explain
 Kurie-plot. Highlight the detection of neutrino's masses through this experiment.
 10
- 4. (a) Why are β -particles of energy 5.5 MeV not observed experimentally for $I_i = 4$ and $I_f = 0$?

(b) What are the expected types of gamma ray transitions between the following odd A-nuclei:

$$g_{9/2} \rightarrow p_{1/2}, f_{5/2} \rightarrow p_{3/2}, h_{11/2} \rightarrow d_{5/2}, h_{11/2} \rightarrow d_{3/2}?$$
 5

5

6

(c) Explain measurement of gamma energies by crystal diffraction method.

UNIT-III

5.	(a)	Write two major differences between compound nucleus and direct	f
5.	(a)	reaction.	נ 2
	(b)	Discuss the validity of the statistical assumption in the continuum region.	2 6
	(a)	C	-
	(C)	Derive the expression for density of state per unit internal energy as function of energy.	sa 6
6.	(a)	Briefly explain the important conservation laws during nuclear reactions.	4
	(b)	Explain the formation and decay of a compound nucleus in a single channel and hence obtain Breit-Wigner single resonance level	
		formula.	10
		UNIT-IV	
7.	(a)	Calculate the Fermi energy for proton and neutron.	4
	(b)	Explain in detail rotational states of deformed even and odd mass number in axially symmetric as well as asymmetric nuclei.	10
8.	(a)	Using Hartree-Fock approximation, show that one-electron wave	4
		equations resemble Schrödinger wave equations.	4

(b) Discuss the shell correction by Strutinsky method. 10

UNIT-V

- 9. (a) Check the interactions by which the processes are allowed
 - (i) $\pi^+ \rightarrow e^+ + \nu_e$

(ii)
$$\pi^+ + p \to n + \pi^+ + \pi^+$$
 4

- (b) Write a short note on quarks. 4
- (c) Explain baryon and meson octet.

10. (a) A pion at rest decays into a muon and a neutrino. In this decay	
process, calculate the speed of the muon?	4
(b) Explain the position-time of four vectors and arrive at time-like,	
space-like and light like conditions for the scalar products.	10