2022

M.Sc. **Second Semester MATHEMATICS** CORE - 07Course Code: MMAC 2.31 (Number Theory)

Total Mark: 70 Time: 3 hours

Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT – I

1.	(a) Prove/disprove: The only prime number of the form $n^3 - 1$ is 7.	4
	 (b) Is 111³³³ + 333¹¹¹ divisible by 7? Justify. (c) Obtain three consecutive integers, each having a square factor. 	5 5
2.	(a) What is the remainder when 18! is divided by 437?	5
	(b) Find the smallest integer $a > 7$ such that	
	2 a, 3 a + 1, 4 a + 2, 5 a + 3, 6 a + 4	6
	(c) If $(a, 35) = 1$, show that $a^{12} \equiv 1 \pmod{35}$.	3

UNIT-II

- 3. (a) Prove that if a has order hk modulo n, then a^h has order k modulo 5 n.
 - (b) Show that if *p* is an odd prime greater than 3, then

$$\left(\frac{3}{p}\right) = \begin{cases} 1 & \text{if } p \equiv \pm 1 \pmod{12} \\ -1 & \text{if } p \equiv \pm 5 \pmod{12} \end{cases}$$

4. (a) Prove that if *n* has a primitive root, then it has exactly $\phi(\phi(n))$ of them. 5 9

(b) State and prove Gauss's lemma.

UNIT – III

5.	(a)	Prove that in a primitive Pythagorean triple x, y, z , the product xy is divisible by 12 and my is divisible by 60	;
		divisible by 12 and xyz is divisible by 60.	3
	(b)	Prove that $x^4 + y^4 = z^2$ has no solution in positive integers.	9
6.	(a)	In a primitive Pythagorean triple <i>x</i> , <i>y</i> , <i>z</i> , show that $x \neq y \pmod{2}$.	
			4
	(b)	Show that 3, 4, 5 is the only primitive Pythagorean triple involving	
		consecutive positive integers.	4
	(c)	Prove the area of a Pythagorean triangle can never be equal to a	
	. /	perfect integral square.	6

UNIT – IV

- 7. (a) Show that the sum of the squares of the first *n* Fibonacci numbers is given by $u_1^2 + u_2^2 + \dots + u_n^2 = u_n u_{n+1}$ 7
 - (b) Using induction on the positive integer *n*, show that $u_1 + 2u_2 + 3u_3 + \dots + nu_n = (n+1)u_{n+2} - u_{n+4} + 2$

7

7

- 8. (a) For the Fibonacci sequence, show that $u_3, u_6, u_9, ...$ are all even integers.
 - (b) Show that $u_1 + u_3 + u_5 + \dots + u_{2n-1} = u_{2n}$ 7

UNIT - V

9. (a) Express
$$\frac{71}{55}$$
 as a finite simple continued fraction.
(b) If $r = [a_0; a_1, a_2, ..., a_n]$, where $r > 1$, show that
 $\frac{1}{r} = [0; a_0, a_1, ..., a_n]$
5
(c) Finite the simple condition of function products for a finite set of 2.1416 and

(c) Find the simple conitinued fraction representations of 3.1416 and 3.14159.

- 10. (a) Compute the convergents of the simple continued fraction [-3;1,1,1,1,3]
 - (b) Evaluate $p_k, q_k, C_k (k 0, 1, ...8)$ for the simple continued fraction [1;2,2,2,2,2,2,2,2] 9

5