2022 M.Sc. Second Semester MATHEMATICS CORE – 06 Course Code: MMAC 2.21 (Measure Theory)

Total Mark: 70 Time: 3 hours Pass Mark: 28

6

Answer five questions, taking one from each unit.

UNIT – I

1. (a) Let \mathcal{A} be an algebra of subsets of a set X. Prove that if $A, B \in \mathcal{A}$ then $A \cap B \in \mathcal{A}$ and $A \Delta B \in \mathcal{A}$.

(b) In a σ -algebra \mathcal{A} , prove that $\liminf_{n \to \infty} A_n$, $\limsup_{n \to \infty} A_n$ and $\lim_{n \to \infty} A_n$ (if it exists) are in \mathcal{A} , where $(A_n : n \in \mathbb{N})$ is any sequence of sets from \mathcal{A} .

- (c) If $(A_n : n \in \mathbb{N})$ is a monotonic sequence in σ -algebra \mathcal{A} , calculate $\lim_{n \to \infty} \inf A_n, \lim_{n \to \infty} \sup A_n.$ Is it true $\lim_{n \to \infty} A_n$ exists in this case? 5
- 2. (a) Let *f* be a mapping of a set *X* into a set *Y*. If \mathcal{B} is a σ -algebra of subsets of *Y* then prove that $f^{-1}(\mathcal{B})$ is a σ -algebra of subsets of *X*.
 - (b) Let *f* be a mapping of a set *X* onto *Y*. For an arbitrary collection \mathcal{E} of subsets of *Y*, prove that $\sigma(f^{-1}(\mathcal{E})) = f^{-1}(\sigma(\mathcal{E}))$ 8

UNIT – II

3. (a) Define measure μ on a σ -algebra of subsets of X and prove that μ is finitely additive. 2+4=6

- (b) Let μ be a measure on a σ -algebra \mathcal{A} of subsets of a set X and $(E_n : n \in \mathbb{N})$ be a decreasing sequence in \mathcal{A} such that there exists a set $A \in \mathcal{A}$ with $\mu(A) < \infty$ and $E_1 \subset A$. Prove that $\lim_{n \to \infty} \mu(E_n) = \mu(\lim_{n \to \infty} E_n)$ 8
- 4. (a) Define the outer measure μ^* on $\mathcal{P}(X)$ and prove that μ^* is additive on $\mathcal{M}(\mu^*)$. 2+3+2=7
 - (b) Let μ^* be regular and σ -finite outer measure on a set *X*. Prove that the following two conditions are equivalent.

(i)
$$\mathcal{M}(\mu^*) = \mathcal{P}(X)$$

(ii)
$$E \in \mathcal{P}(X), F \in \mathcal{M}(\mu^*), E \subset F, \mu^*(E) = \mu^*(F)$$
 implies
 $\mu^*(F - E) = 0.$ 7

UNIT – III

- 5. (a) Define Lebesgue outer measure μ_L^* on \mathbb{R} and prove that $\mu_o^*(E) = \mu_c^*(E)$ for every $E \in \mathcal{P}(\mathbb{R})$. 2+5=7 $(\mu_o^*, \mu_c^*$ denote Lebesgue outer measure using open and closed intervals respectively.)
 - (b) Prove that every interval in \mathbb{R} is Lebesgue outer measurable. 7
- 6. (a) For the Lebesgue measure space $(\mathbb{R}, \mathcal{M}_L, \mu_L)$ prove the following.
 - (i) $(\mathbb{R}, \mathcal{M}_L, \mu_L)$ is σ -finite 2
 - (ii) Every Borel set in \mathbb{R} is a Lebesgue measurable set 3 (iii) Every non-empty open set O in \mathbb{R} , $\mu_{\mathcal{L}}(O) > 0$ 2
 - (iii) Every non-empty open set O in \mathbb{R} , $\mu_L(O) > 0$
 - (b) For $E \in \mathcal{P}(\mathbb{R})$, prove that the following conditions are equivalent.
 - (i) $E \in \mathcal{M}_L$
 - (ii) For every $\varepsilon > 0$, there exists a closed set $C \subset E$ with $\mu_L^* (E C) \le \varepsilon$

(You may assume the result that you may be using in proving the above result.)

7

UNIT – IV

7. (a) Let (X, \mathcal{A}) be a measurable space and let f be an extended real valued \mathcal{A} -measurable function defined on $D \in \mathcal{A}$. Prove that

(i)
$$\{x \in D / f(x) = \alpha\} \in \mathcal{A}$$
 for every $\alpha \in \mathbb{R}$
(ii) $\{x \in D / f(x) \in \mathbb{R}\} \in \mathcal{A}$ 5+2=7

- (b) Let (X, \mathcal{A}) be a measurable space and let f and g be two extended real valued \mathcal{A} -measurable functions on a set $D \in \mathcal{A}$. Find the domain of definition $\mathcal{D}(fg)$ of fg and prove that $\mathcal{D}(fg)$ is in \mathcal{A} and fg is \mathcal{A} -measurable on the domain. 7
- 8. (a) Define convergence *a.e.* (almost everywhere) and prove that if (f_n : n ∈ N) be a sequence of real valued A-measurable functions on a set D ∈ A and g₁, g₂ are A-measurable on D and lim f_n = g₁ a.e. and lim f_n = g₂ a.e., then g₁ = g₂ a.e. on D
 7 (b) State and prove Egorov theorem.

UNIT-V

- 9. (a) Define a simple function, express its canonical representation and its Lebesgue integral. 2+2+3=7
 (b) State and prove Fatou's Lemma for non-negative measurable
 - functions. 7
- 10. (a) If f is integrable on D, then prove that then $|f| < \infty$ on D. 7
 - (b) Let (X, A, μ) be a measure space. Let f and g be two extended real valued A-measurable functions on D ∈ A. Suppose f ≤ g. Prove that
 - (i) if f is semi-integrable on D and $\int_{D} f d\mu \neq -\infty$, then g is semiintegrable on D.

(ii) if g is semi-integrable on D and $\int_{D} gd\mu \neq \infty$, then f is semi-integrable on D.

7