2022

B.A./B.Sc. Sixth Semester DISCIPLINE SPECIFIC ELECTIVE – 4 MATHEMATICS Course Code: MAD 6.21 (Differential Geometry)

Total Mark: 70 Time: 3 hours Pass Mark: 28

4

7

4

Answer five questions, taking one from each unit. Note: Symbols have their usual meaning.

UNIT-I

- 1. (a) Define osculating plane and find the equation of the osculating plane at the point of the curve. 4
 - (b) Define curvature and find an expression for the curvature at a given point to a given curve. Also show that a necessary and sufficient condition for the curve to be straight line is that the curvature $\kappa = 0$ at all points of the curve. 6
 - (c) Find the radius of curvature and radius of torsion at a point of

intersection of the surfaces $x^2 + y^2 = z^2$, $z = a \tan^{-1}\left(\frac{y}{x}\right)$, where $y = x \tan \theta$

- 2. (a) State and prove the existence theorem for space curves.
 - (b) Define Osculating circle and osculating sphere and find the equation of the osculating circle at (1,2,3) on the curve x = 2t + 1, $y = 3t^2 + 2$, $z = 4t^3 + 3$ 2+5=7

UNIT – II

3. (a) Let $\overline{r} = \overline{r}(u, v)$ be the equation of the surface. Then prove that a proper parametric transformation either leaves every normal unchanged or reverses every normal.

- (b) Define second fundamental form and find second order magnitudes of the surface $\overline{r} = \overline{r}(u, v)$ and calculate the fundamental magnitudes and the normal to the surface $2z = ax^2 + 2hxy + by^2$, taking x, y as parameters. 5
- (c) Find the angle between two directions on the surface at the point *P* having direction coefficients (l, m) and (l', m') and find the direction coefficients of the direction making an angle $\frac{\pi}{2}$ with the direction having direction coefficients (l, m).
- 4. (a) Define principal curvature and find the equation giving the principal curvatures. 6
 - (b) Define lines of curvature on a surface and then state and prove the Rodrigue's formula. 1+7=8

UNIT – III

5.	(a) Show that a necessary and sufficient condition for a curve									
	v = constant to be geodesic on the general surface is									
	$EE_{2} + FE_{1} - 2EF_{1} = 0$	5								
	(b) Discuss the nature of a geodesics on a surface of revolution.									
6.	(a) State and prove Clairaut's theorem.									
	(b) Find the geodesic curvature of the parametric curve $v = c$.									
	(c) Prove that the curves of the family $(v^3 / u^2) = \text{const.}$ are geodesic	CS								
	on a surface with metric $v^2 du^2 - 2uv du dv + 2u^2 dv^2$, $(u, v > 0)$	4								

UNIT – IV

7.	(a)	(a) Define contravariant and covariant vectors and prove that the												e	
	transformations of these vectors are transitive.										6				
		D	.1 .	1		1	0					0	•	1	

(b) Prove that the open product of two vectors is a tensor of order two, and the outer product of two tensors is a tensor whose order is sum of the orders of the two tensors. 2+3=5

3

(c) Show that Kronecker delta is a mixed tensor of rank two.

- 8. (a) Define inner product of two tensors, then state and prove quotient law of tensors.
 - (b) Let a quantity A(p,q,r) is such that in the x^i coordinate system, $A(p,q,r)B_r^{qs} = C_p^s$, where B_r^{qs} is an arbitrary tensor and C_p^s is a tensor. Prove that A(p,q,r) is a tensor.

6

4

4

6

(c) If $A_{ij} = 0$ for $i \neq j$ and $A_{ij} \neq 0$ for i = j, then show that the conjugate tensor $B^{ij} = 0$ for $i \neq j$ and $B^{ii} = \frac{1}{A_{ii}}$ (no summation) 4

UNIT – V

- 9. (a) Show that the Riemannian metric g_{ij} is a second rank covariant symmetric tensor.
 - (b) Define Christoffel symbols of first and second kind and show that they are not tensor quantities.
 - (c) If ∇² is the Laplacian operator and \$\overline\$ is a scalar function of coordinates xⁱ, then prove that

$$\nabla^2 \phi = g^{ij} \left(\frac{\partial^2 \phi}{\partial x^i \partial x^j} - \frac{\partial \phi}{\partial x^l} \left\{ {l \atop i j} \right\} \right) = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^i} \left(\sqrt{g} g^{ij} \phi_{,j} \right)$$

$$4$$

- 10. (a) Obtain covariant derivative of a covariant vector with respect to the fundamental tensor g_{ij} .
 - (b) Prove a necessary and sufficient condition that the curl of a vector field vanishes is that the vector field be gradient.3
 - (c) If A_{ii} is the curl of a covariant vector, show that

$$A_{ij,k} + A_{jk,i} + A_{ki,j} = 0 \text{ and that is equivalent to}$$
$$\frac{\partial A_{ij}}{\partial x^{k}} + \frac{\partial A_{jk}}{\partial x^{i}} + \frac{\partial A_{ki}}{\partial x^{j}} = 0$$
7