2022

B.A./B.Sc. Sixth Semester DISCIPLINE SPECIFIC ELECTIVE – 3 MATHEMATICS Course Code: MAD 6.11 (Theory of Equations)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.			+3=4
	(b)	Express 2 ¹ / ₂ :	$\times 2=5$
		(i) $x^3 - 10x^2 + 3x + 3$ as a polynomial in $(x-3)$	
		(ii) $2x^4 - x^3 - 2x^2 + 5x - 1$ as a polynomial in $(x+3)$	
	(c)	Show that the equation $\frac{a^2}{x-a'} + \frac{b^2}{x-b'} + \dots + \frac{k^2}{x-k'} = x-m$, w	here
		$a, b, \dots, k, m, a', b', \dots, k'$ are all real numbers, cannot have a nor	ıreal
		roots.	5
2.	(a)		×2=4
		(i) $x^5 + x^3 - 2x^2 + x - 2 = 0$	
		(ii) $x^4 + 15x^2 + 7x - 10 = 0$	
	(b)	Solve $x^3 - 9x^2 + 14x + 24 = 0$ given that two of the roots are in	the
		ratio 3:1.	5
	(c)	If the roots of $x^3 + 3px^2 + 3qx + r = 0$ are in harmonic progress	sion
		then show that $2q^3 = r(3pq - r)$.	5

UNIT – II

3.	(a) Transform the equation $\frac{2}{3}x^4 - \frac{1}{3}x^3 + \frac{1}{16}x - \frac{1}{64} = 0$ into another w	ith
	integral coefficient and its leading coefficient unity. (b) Find the polynomial whose roots are the cubes of the roots of the	2
	equation $x^3 + 33x^2 + 12x + 8 = 0$. (c) Derive the equation whose roots are the square difference of the	6
	roots of the equation $x^3 + 6x^2 + 9x + 4 = 0$ and hence solve it.	6
4.	(a) Solve the equation $x^5 + 6x^4 - 7x^3 - 7x^2 + 6x + 1 = 0$.	5
	(b) Find the special roots of the equation $x^8 - 1 = 0$.	4
	(c) If α is a non-real root of $x^7 - 1 = 0$, find the equation whose roots	1
	are $\alpha + \alpha^6, \alpha^2 + \alpha^5, \alpha^3 + \alpha^4$.	5

UNIT – III

5.	(a) Using Cardan's method, find the roots of the equation	
	$2x^3 + 3x^2 + 3x + 1 = 0.$	5
	(b) Determine the roots of the equation $x^3 - 12x + 8 = 0$.	4
	(c) Solve $x^4 + 5x^3 + x^2 - 13x + 6 = 0$.	5
6.	(a) Solve $x^4 - 12x^3 + 41x^2 - 18x = 72$ using Ferrari's method.	5
	 (b) Show that the equation x⁴ + 3x³ - 7x² - 15x + 18 = 0 has multiple roots. (c) Fig. 14be Federa's subject the equation 	4
	(c) Find the Euler's cubic of the equation $x^{4} + 8x^{3} - 34x^{2} - 392x - 735 = 0$ and hence solve it.	5
	UNIT – IV	

7.	(a) Define symmetric function of the roots of an equation.	1
	(b) If α, β, γ be the roots of the equation $x^3 + px^2 + qx + r = 0$, then f	ind
	the following values in terms of p, q and r 2×2	1=8

(i) $\sum \alpha^3$ (ii) $\sum \alpha^2 \beta^2$

(iii)
$$\sum \frac{1}{\alpha}$$
 (iv) $\sum \frac{1}{\alpha^2}$

(c) Using Newton's theorem find the values of $\sum \alpha^6$ and $\sum \alpha^7$, where α, β, γ , and δ are the roots of the equation $x^4 + 6x^2 + 9x - 1 = 0$.

- 8. (a) Find the limits of the roots of the equation $x^3 9x^2 + 13x 23 = 0$.
 - (b) Show that -8 is a superior limits of the negative roots of the equation $x^4 - 2x^3 - 13x^2 + 38x - 24 = 0$.
 - (c) Form an equation whose roots are $\beta\gamma + \frac{1}{\alpha}$, $\gamma\alpha + \frac{1}{\beta} \& \alpha\beta + \frac{1}{\gamma}$, where α, β, γ are the roots of the equation $x^3 px^2 + qx r = 0$. 3

UNIT – V

9.	(a)	Using theorem of Fourier & Budan and DeGau's rule for imaginary roots, find the character of the roots of the equation	
	(b)	$x^{8} + 10x^{4} + x - 4 = 0$. Find all the Sturm's function and the position of the real roots of the	5
		equation $x^5 + 2x^4 + x^3 - 4x^2 - 3x - 5 = 0$.	5
	(c)	Find the roots of the equation $x^3 + x^2 + x = 100$ correct to three decimal places using Newton's method of approximation.	4
10.		Using Horner's method, find a positive roots of the equation $x^3 - 3x + 1 = 0$ correct to seven decimal places. Find, correct to four decimal places, the value of the two nearly	7
		equal roots of the equation $x^3 - 7x + 7 = 0$ which lie between 1 & 2	2. 7