2022

B.A./B.Sc. Sixth Semester

CORE-14

STATISTICS

Course Code: STC 6.21 (Multivariate Analysis & Nonparametric Methods)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Define bivariate normal distribution. Write down the assumptions of bivariate normal distribution. 1+4=5
	(b)	Show that for the bivariate normal distribution $f(x, y)$ is a probability
		density function. 4
	(c)	Obtain the moment generating function of bivariate normal distribution. 5
2.	· /	Write down the properties of bivariate normal distribution.5Obtain the conditional distribution of X for fixed Y of the bivariate normal distribution.5
	(c)	Show that if X_1 and X_2 are independent normal variates with correlation coefficient ρ between them, then the correlation coefficient between
		X_1^2 and X_2^2 is given by ρ^2 .

UNIT-II

3. (a) Give the Rao's definition of multivariate normal distribution. If the density of a p-dimensional random vector X is given as

 $|A|^{\frac{1}{2}} (2\pi)^{-\frac{p}{2}} e^{-\frac{1}{2}(X-\mu)^T A(X-\mu)}$, then show that $E(X) = \mu$ and covariance matrix is A^{-1} which is generally denoted by Σ . 2+6=8

(b) Obtain the moment generating function of multivariate normal distribution. 6

- 4. (a) If $X \sim N_p(\mu, \Sigma)$, then determine the value of the constant k of multivariate normal distribution. 7
 - (b) If $X \sim N(\mu, \Sigma)$ and $Y \sim N(\mu, \Sigma)$, then show that X and Y have the same distribution. 4
 - (c) Let x have a multivariate normal distribution with covariance matrix

$$\Sigma = \begin{bmatrix} 1 & \rho & \rho^2 \\ \rho & 1 & 0 \\ \rho^2 & 0 & 1 \end{bmatrix}$$
, Show that the conditional distribution of

 (X_1, X_2) given $X_3 = x_3$ is also multivariate normal with mean

$$\mu = \begin{bmatrix} \mu_1 + \rho^2 (x_3 - \mu_3) \\ \mu_2 \end{bmatrix} \text{ and covariance matrix} \begin{bmatrix} 1 - \rho^4 & \rho \\ \rho & 1 \end{bmatrix}. \qquad 3$$

UNIT-III

5.	~ /	Define σ -scores and standard scores.	4
	(b)	Write notes on scaling of rankings and scaling of ratings in tern normal probability curve.	ms of 6
	(c)	What do you understand by reliability of test scores? Write de assumptions of reliability of test scores.	own the 4
6.	(a)	Write notes on normalised scores and T-scores. Define perce	
		scores.	6+3=9
	(b)	What is index of reliability? Describe one of the methods of	
		determining test reliability.	2+3=5

UNIT-IV

7.	(a)	What is index numbers? Write down the characteristics of index
		numbers. 2+4=6
	(b)	Distinguish between fixed based and chain based index numbers. 4
	(c)	Show that Fisher's index number formula satisfies both the time
		reversal test and the factor reversal test. 4
8.	(a)	Explain different types of index numbers. 4
	(b)	Discuss the problems involved in the construction of index numbers.
		5
	(c)	Show that Marshall-Edgeworth's index numbers lies between
		Laspeyre's and Paasche's index number formula. 5
		UNIT-V
9.	(a)	What is meant by cost of living index numbers? Discuss the uses
		of cost of living index numbers. $2+5=7$
	(b)	Write a notes on the following: $3\frac{1}{2} \times 2 = 7$
		(i) Wholesale price index numbers
		(ii) Index number of agricultural production

10. (a)	Discuss the problems involved in the construction of cost of living	
	index number.	7
(b)	What do you mean by deflating the index numbers?	3
(c)	Explain briefly about index numbers of industrial production.	4