2022 B.A./B.Sc. Sixth Semester CORE - 14PHYSICS Course Code: PHC 6.21 (Statistical Mechanics)

Total Mark: 70 Time: 3 hours

Pass Mark: 28

3

6

5

Answer five questions, taking one from each unit.

UNIT-I

- (a) A particle of unit mass is executing simple harmonic motion. 1. Determine its trajectory in phase space.
 - (b) Define Maxwell-Boltzmann distribution law. Show that the lowest energy cell contains more molecules than the higher cells.
 - (c) Consider a system of N identical particles which can occupy energy levels 0, ϵ . Find the partition function and also find Helmholtz free energy, average energy, entropy and specific heat of the system. 5
- (a) State the law of equipartition of energy. Use the classical distribution 2. law to prove that the average energy for each degree of freedom of a

perfect gas molecule is $\frac{1}{2}KT$.

- (b) Explain the thermodynamic functions of a two energy level system. 3
- (c) Derive an expression for the partition function of a system of free particles. Deduce Sackur-Tetrode relation using partition function. 6

UNIT-II

- 3. (a) State and prove the Wien's distribution law of radiation 6 (b) A black body at 500°C has a surface area of 0.5 m^2 and radiates 2
 - heat at the rate of 1.02×10^4 J/s. Calculate Stefan's constant.

	(c)	Explain the terms emissive power and absorptive power. Deduce Kirchhoff's law of a black body radiation.	6			
4.		Draw graphs showing the distribution of energy of a black body at different temperatures. Discuss briefly the different laws which try to explain the above energy spectrum.	, 7			
	(b)	State and prove Saha's ionization formula.	7			
	UNIT–III					
5.	(a)	Discuss the distribution of energy in the spectrum of a black body of the basis of the experiment performed by Lummer and Pringsheim. What are the salient features of black body radiation?	n 5			
	(b)	What are the basic assumptions of Planck's theory of black body radiation? Deduce Planck's formula and explain the experimental	9			
6.	(a)	Use Planck's formula to obtain expression for(i) Stefan's constant and(ii) Wien's constant				
	(1)		8			
	~ /	Explain why radiation exerts pressure. Show that the Stefan's constant (σ) is related to Planck's constant	2			
		$2 \pi^5 \kappa^4$	4			
	UNIT–IV					
7.	(a)	Compare the basic postulates of Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics. How do the Bose and Fermi distribution tend to the classical distribution?				

- (b) Deduce Bose-Einstein distribution formula and explain the phenomenon of Bose-Einstein condensation.
- (c) Which distribution law will you use for the study of photon gas and why? 2

7

8. (a) What are bosons? Show that for Bose-Einstein gas, the relation between the total number of particles and the total energy is given by

the expression
$$E = \frac{1}{2}nKT$$
. 9

5

(b) Explain qualitatively the properties of liquid He.

UNIT-V

9.	(a)	What is Fermi gas? Deduce an expression for the energy of a Fermi	í
		gas at absolute zero.	6
	(b)	Show that the mean energy of free electron at absolute zero is $3/5$	
		times the Fermi energy.	4
	(c)	Deduce the expression for Fermi energy ε_F .	4
10.	(a)	What are the drawbacks of Einstein theory for the specific heat of solid? What was Debye's approach in this matter? Derive Debye's	0
		formula for specific heat of solid.	9
	(b)	Obtain the Chandrashekhar limit for white dwarf stars.	5