2022

B.A/B.Sc. Sixth Semester CORE – 14 MATHEMATICS Course Code: MAC 6.21 (Ring Theory & Linear Algebra – II)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a) Prove that R is an integral domain if and only if $R[x]$ is an integral domain. If R is a field, will $R[x]$ be a field? Justify.	5
	(b) State and prove the division algorithm for polynomials.	5
	(c) If \mathbb{R} is the field of real numbers, show that $\frac{\mathbb{R}[x]}{\langle x^2 + 1 \rangle} \cong \mathbb{C}$, the ring of	f
	complex numbers.	4
2.	(a) Let <i>F</i> be a field. If $f(x) \in F[x]$ and deg $f(x)$ is 2 or 3, prove the	at
	f(x) is reducible over F if and only if $f(x)$ has zero in F.	4
	(b) If $f(x) \in \mathbb{Z}[x]$ is reducible over \mathbb{Q} (the field of rationals), prove	
	that $f(x)$ is reducible over \mathbb{Z} (the ring of integers)	5
	(c) If F is a field, prove that $F[x]$ is a principal ideal domain.	5

UNIT – II

3. (a) Prove that every Euclidean domain is a principal ideal domain. 5

(b) Show that
$$\frac{\mathbb{Q}[x]}{I}$$
, where $I = \langle x^2 - 5x + 6 \rangle$, is not a field. 2

(c) If R is a unique factorization domain, prove that the polynomial ring R[x] is also a unique factorization domain.

7

4

5

6

- 4. (a) Prove that any two elements in a Euclidean domain have a greatest common divisor. 5
 - (b) Prove that in a unique factorization domain, an element is prime if and only if it is irreducible. 5
 - (c) Find all units of the ring $\mathbb{Z}\left[\sqrt{-5}\right]$.

UNIT – III

5. (a) If W is a subspace of a finite dimensional vector space V over a field F, prove that dim W + dim W° = dim V, where W° is the annihilator of W.
(b) If B = {(2,1), (3,1)} is a basis of ℝ² over ℝ, find the dual basis of A.
(c) If T is a linear operator on the vector space V over a field F and

 $\lambda \in F$ is an eigenvalue of *T*, then for any polynomial $f(x) \in F[x]$, show that $f(\lambda)$ is an eigenvalue of f(T).

- 6. (a) If T is a linear operator on the vector space V over a field F, prove that the roots of the minimal polynomial and the characteristic polynomial of T are same, except for their multiplicities.
 5
 - (b) If T is a linear operator on \mathbb{R}^3 which is represented in the standard

ordered basis by the matrix
$$A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$$
, prove that *T* is

diagonalizable by exhibiting a basis of \mathbb{R}^3 , each of which is a characteristic vector of T.

(c) If T is a linear operator on a vector space V, prove that ker T and Im(T) are invariant under T, where ker T and Im(T) denote the kernel and image of T respectively.

UNIT – IV

- 7. (a) State and prove Cauchy-Schwarz inequality for inner product space.
 - (b) If *W* is a non-empty subset of a inner product space *V* over a field *F*, prove that the orthogonal complement of *W*, W^{\perp} is a subspace of *V*.

5

3

(c) Find an orthonormal basis of the vector space V of all real polynomials of degree not greater than 2, in which the inner product

is defined as
$$\langle f(x), g(x) \rangle = \int_{-1}^{1} f(x) g(x) dx$$
. 6

- 8. (a) Prove that every finite dimensional inner product space has an orthonormal basis.
 (b) Prove that an orthogonal set of nonzero vectors of an inner product
 - (b) Prove that an orthogonal set of nonzero vectors of an inner product space is linearly independent. 4
 - (c) State and prove the triangle inequality for inner product space. 4

UNIT - V

- 9. (a) If *V* is a finite dimensional inner product space and *T* is linear operator on *V*, prove that there exists a unique function $T^*: V \to V$ such that $\langle T(x), y \rangle = \langle x, T^*(y) \rangle \quad \forall x, y \in V$. Also show that T^* is linear.
 - (b) Prove that every linear operator on a finite dimensional inner product space V can be uniquely expressed as $T = T_1 + T_2$, where T_1 is selfadjoint and T_2 is skew-symmetric.

- (c) If *T* is a linear operator on a complex inner product space *V*, prove that *T* is normal if and only if $||T^*(u)|| = ||T(u)|| \forall u \in V$, where T^* is the adjoint of *T*. 5
- 10. (a) If T is a self-adjoint operator on an inner product space V, prove that every eigenvalue of T is real. Also, prove that eigenvectors u, v of T corresponding to distinct eigenvalues are orthogonal. 6
 - (b) Let *T* be a linear operator on an inner product space *V* and *W* be a subspace of *V*. If W is invariant under *T*, prove that W^{\perp} is invariant under *T**.
 - (c) If *T* is a normal operator on an inner product space *V* over a field *F*, show that $T - \alpha I$ is normal for every $\alpha \in F$, where *I* is the identity on *V*. 5