2022 B.A./B.Sc. Sixth Semester CORE –13 STATISTICS Course Code: STC 6.11 (Design of Experiments)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) What do you mean by experimental error? Explain the role of basic principles of design of experiment with regard to the experimental error. 3+4=7
 - (b) Represent the yield of a plot in RBD by a fixed effect additive linear model and estimate the parameters involved in it. Also establish the relationship between the sums of squares among various sources of variation. 2+3+2=7
- 2. (a) Give the layout of Latin Square Design. Mention the advantages and disadvantages of Latin Square Design.
 2+4=6
 - (b) Suppose in a RBD with 5 treatments and 4 blocks, the observed difference between two treatment means is 10 and EMS is 20. Given that $t_{0.025,12} = 2.18$ then will the observed difference be statistically significant? Justify.
 - (c) What do you mean by efficiency of design? Obtain the relative efficiency of RBD compared to CRD. 2+3=5

UNIT-II

3. (a) Suppose the yield of a plot in a randomized block design is missing. Estimate the missing yield in usual notation. Also, obtain by what amount the treatment sum of square for the completed data is overestimated.

4+4=8

(b) Give an outline of statistical analysis of a randomized block design when the yield of a plot is missing.

6

6

7

- 4. (a) Explain the different situations with the help of an example of a randomized block design if the yields of two plots are missing.
 - (b) Obtain the standard error of difference between the means of two treatments in a Latin square design when under one of the treatments there is a missing observation and under the other there is no missing observation.

UNIT-III

- Give an outline of statistical analysis of Balanced Incomplete Block Design.
 14
- 6. (a) Define a Balanced Incomplete Block Design stating the meaning of the notations used. 2
 - (b) Define an incidence matrix of a Balanced Incomplete Block Design.
 Give an example of an incidence matrix of a Balanced Incomplete Block Design.
 2+3=5
 - (c) Prove that $\lambda(v-1) = r(k-1)$ for a Balanced Incomplete Block Design with usual notation.

UNIT-IV

7. (a) Factorial design increases the precision of the design. Justify with an example.
(b) Write down all the second order interactions of a 2⁵ factorial design with five factors A, B, C, D, E.
(c) Prove that the total number of factorial effects in a 2ⁿ factorial design

- 8. (a) What do you mean by factorial design? Show that the interaction effects AB and ABC in a 2^3 factorial design with factors A, B and C are orthogonal contrast. 3+4=7
 - (b) Give an outline of the statistical analysis of a 2^3 factorial design. 7

UNIT-V

9.	(a)	What do you mean by confounding in design of experiment?	
		Describe how confounding helps in reducing the experimental error	S
		in design of experiments.	7
	(b)	Distinguish between completely confounded and partially confounded	ed
		design.	4
	(c)	Suppose three factorial effects have been confounded in a	
		2^4 factorial design with factors A, B, C and D. Is the subgroup	
		[ABCD, BCD, A, I] a suitable confounding subgroup? If not, why?)
			3
10.	(a)	Describe the principle of confounding and how confounding	
	. ,	increases the precession of the design.	4
	(b)	In a 2^4 confounded design, the elements of one of the blocks are	
		a,b,cd,abcd. Identify the confounded effects.	5
	(c)	Distinguish between orthogonality and confounding in design of	
	(-)	experiment.	5