2022

B.A/B.Sc. Fourth Semester SKILL ENHANCEMENT COURSE – 2 MATHEMATICS Course Code: MAS 4.11 (Currh Theore)

(Graph Theory)

Total Mark: 35 Time: 2 hours Pass Mark: 14

4

1+2+1=4

Answer five questions, taking one from each unit.

UNIT-I

- 1. (a) Define a simple graph. Find the maximum degree of any vertex in a simple graph with *n* vertices. 1+2=3
 - (b) Verify whether there exist a simple graph corresponding to the following degree sequence.
 - (i) [0, 2, 2, 3, 4]
 - (ii) [2, 2, 3, 4, 4, 5]
 - (iii) [2, 2, 4, 6]
 - (iv) [2, 2, 2, 2, 4]

If any such simple graph exists, draw its corresponding graph.

2. (a) State Hakimi-Havel theorem. Show that the sequence

[6, 5, 5, 4, 3, 3, 2, 2, 2] is a graphical vector. Also draw its corresponding graph.

(b) Define regular graph. Does there exist a 4 regular graph of 6 vertices? If so construct a graph. 1+1+1=3

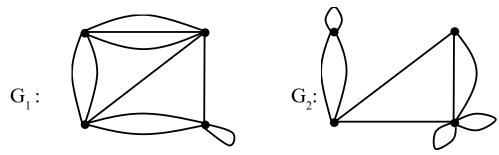
UNIT – II

- 3. (a) Define compliment of a simple graph. Draw two self-complementary graphs of order 5. 1+2=3
 - (b) Construct the adjacency and incidence matrix to represent the following graphs. 2+2=4

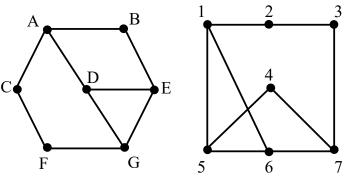
3

2

2



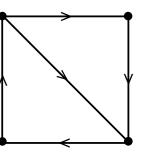
4. (a) Show that the graphs are isomorphic using adjacency matrix.



(b) Draw the graph represented by the incidence matrix

[1	1	1	0	0	0	0	0
0	1	1	1	0	1	1	0
0	0	0	1	1	0	0	0
0	0	0	0	0	0	1	1
0	0	0	0	1	1	0	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$

(c) Find the incidence matrix to represent the graph.



UNIT – III

3

4

4

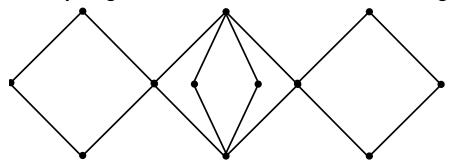
5. (a) Verify whether the following graphs are isomorphic.

(b) Prove that the maximum edges of a simple graph with n vertices and

k components is
$$\frac{(n-k)(n-k+1)}{2}$$
. 4

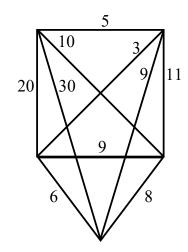
6. (a) In a connected graph G with exactly $2n (n \ge 1)$ odd vertices, prove that the set of edges of G can be partitioned into *n* open trail. 3

(b) Use Fleury's algorithm to construct an Euler circuit of the graph. 4



UNIT-IV

- 7. (a) State and prove Dirac's theorem.
 - (b) Define maximal non-Hamiltonian graph. Give two examples. 1+2=3
- 8. (a) Solve the travelling salesman problem.

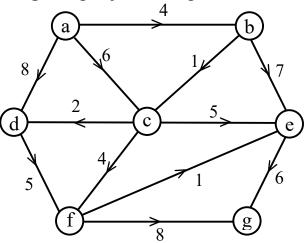


1+1+1=3

- (b) Draw a graph which contains the following:
 - (i) An Eulerian circuit and a Hamiltonian cycle
 - (ii) An Eulerian circuit but not a Hamiltonian cycle
 - (iii) A Hamiltonian cycle but not an Eulerian circuit

UNIT – V

9. Define the shortest path problem. Determine the shortest path between the vertices a to g using Dijkstra's algorithm. 1+6=7



 Obtain the shortest distance matrix between all the vertices using Floyd-Warshall algorithm.

