2022

B.A./B.Sc. Fourth Semester GENERIC ELECTIVE – 4 PHYSICS Course Code: PHG 4.11 (Waves & Optics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Obtain an expression for the resultant motion of two collinear	
		harmonic oscillations with same frequency. Hence, discuss the	
		resultant amplitude at any point.	6
	(b)	What are Lissajous figure? Obtain the resultant of two SHM of the	
		same period but different amplitude and phases acting in	
		perpendicular direction.	6
	(c)	A note produces 4 beats per second with a tuning fork of frequency	7
		512 Hz and 6 beats per second with another tuning fork of frequence	су
		514 Hz. Find the frequency of the note.	2
2.	(a)	Discuss the expression of stationary waves motion in a string fixed a	ıt
		its ends. Hence, obtain the different modes of vibration.	6
	(b)	Find the relationship between phase velocity and group velocity of	
		waves.	4
	(c)	Distinguish between travelling and standing waves.	2
	(d)	Calculate the velocity of sound in a gas in which two waves of	
		wavelength 0.5 metre and 50.5 cm produce 6 beats per second.	2
		UNIT–II	
3.	(a)	Discuss the backward dragging force in determination of coefficient	

of viscosity. Write down the Poiseuille's equation. 6

	(b)	Explain Jaeger's method for determination of surface tension of	
		water.	4
	(c)	What are synclastic and anti-elastic surface?	2
	(d)	A soap bubble is slowly enlarged from a radius of 10 cm to 100 cm	l.
		Calculate the work done in the process. Surface tension of soap	
		solution is 26×10^{-3} N/m.	2
4.	(a)	Give the theory of forced vibration in sound waves.	4
	(b)	Find the expression of a square wave formation by the application	
		of Fourier series.	4
	(c)	What are the requirements of a good auditorium? Derive Sabine's	
		formula for reverberation time.	6

UNIT-III

5.	(a)	Derive the expression for the intensity at a point of interference of light wave. Give the conditions for maximum and minimum intensity. 3+2=5		
	(b)	Discuss the formation of fringes by Llyod's mirror. Find the expression for fringe width. $4+2=6$		
	(c)	Give Stokes treatment to explain the change of phase in the case of reflection of light waves in a denser medium. 3		
6.	(a)	Explain interference of light waves from division of wave front and division of amplitude. 2		
	(b)	What are Newton's ring? How are they formed? Derive an expression for the radius of the n th dark ring formed by reflection. 2+3+3=8		
	(c)	Newton rings are formed with red light of $\lambda = 670$ nm. The radius of the 20th dark ring is found to be 1.1×10^{-2} m. Find the radius of curvatures of the lens and the radius of 30^{th} dark ring.		
UNIT-IV				
_	$\langle \rangle$			

7. (a) With proper ray diagram, discuss the construction and working of Michelson's interferometer. How will you use it to measure the wavelength of monochromatic light? 2+3+3=2=10

- (b) In Michelson's interference, a light shift of 150 fringes is found when all the air from tube is removed. If the wavelength of light used is 4000 Å in air and length of the tube is 30 cm, calculate the refractive index of air.
- 8. (a) Show that the plane polarized and circular polarized lights are special cases of elliptically polarized light. 8
 - (b) Discuss polarized and unpolarized light. 3+3=6

UNIT-V

9. (a) Explain half period zone of Fresnel diffraction pattern of light waves. Hence, obtain the radius and area for the half period zones.

6+2+2=10

7

- (b) How many half period elements are there in a circular portion of 1/100 m radius of a plane wave front? Given that the wavelength is 6×10^{-7} m and the distance of the point of observation of the wave front is one metre.
- 10. (a) With proper ray diagram, explain Fraunhofer diffraction pattern of light waves for the conditions of maxima and minima position.7
 - (b) Give the theory of zone plate in diffraction of light waves.