2022

B.A/B.Sc.

Fourth Semester

GENERIC ELECTIVE – 4

MATHEMATICS

Course Code: MAG 4.11

(Differential Equation & Higher Trigonometry)

Total Mark: 70 Pass Mark: 28

Time: 3 hours

Answer five questions, taking one from each unit.

UNIT-I

1. (a) Fine the equation of the curve represented by

$$(y - yx)dx + (x + xy)dy = 0$$
 and passing through the point (1,1)

3

6

(b) Solve:
$$\frac{dy}{dx} = \frac{x + 2y - 3}{2x + y - 3}$$

(c) Solve the Bernoulli's equation
$$(x^3y^2 + xy)dx = dy$$
 5

2. (a) Solve
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 10y + 37\sin 3x = 0$$
, and find the value of y

when
$$x = \frac{\pi}{2}$$
 if it is given that $y = 3$ and $\frac{dy}{dx} = 0$ when $x = 0$

(b) Solve:
$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^x$$

(c) Solve:
$$x^2 \frac{d^2 y}{dx^2} + y = 3x^2$$

UNIT-II

3. (a) Solve:
$$y(1+xy)dx + x(1-xy)dy = 0$$

(b) Solve:
$$p^3 + (2x - y^2) p^2 - 2xy^2 p = 0$$

(c) Solve the Lagrange's equation
$$y = 3px + 4p^2$$

4. (a) Solve:
$$(y^2 + 2x^2y)dx + (2x^3 - xy)dy = 0$$

(b) Solve:
$$yp^2 - 2xp + y = 0$$

(c) Find the general and singular solution of
$$y = px + \frac{a}{p}$$

UNIT-III

5. (a) Solve by the method of variation of parameters

$$x^{2} \frac{d^{2} y}{dx^{2}} - 2x(1+x)\frac{dy}{dx} + 2(x+1)y = x^{3}$$

(b) Solve:
$$\frac{d^2y}{dx^2} - 2\tan x \frac{dy}{dx} + 5y = 0$$

(c) Solve the ordinary simultaneous equations

$$\left(\frac{d}{dt} + 2\right)x + 3y = 0$$

$$3x + \left(\frac{d}{dt} + 2\right)y = 2e^{3t}$$
4

6. (a) Solve:
$$2(y+z)dx - (x+z)dy + (2y-x+z)dz = 0$$
 5

(b) Solve the simultaneous equation
$$\frac{dx}{xy} = \frac{dy}{y^2} = \frac{dz}{zxy - 2x^2}$$

(c) Solve:
$$xz^3 dx - 3dy + 2ydz = 0$$
 5

UNIT-IV

7. (a) Find the equation whose roots are $\sec^2 \frac{2\pi}{7}$, $\sec^2 \frac{4\pi}{7}$, $\sec^2 \frac{6\pi}{7}$

Also find the value of $\sec \frac{2\pi}{7} + \sec \frac{4\pi}{7} + \sec \frac{6\pi}{7}$

- (b) Prove that $(1+i)^n + (1-i)^n = 2^{\frac{n}{2}+1} \cos\left(\frac{n\pi}{4}\right)$
- (c) Prove that $\cos \frac{2\pi}{7}$, $\cos \frac{4\pi}{7}$, $\cos \frac{6\pi}{7}$ are the roots of the equation $8x^3 + 4x^2 4x 1 = 0$
- 8. (a) If θ be small, prove that $\theta \cot \theta = 1 \frac{\theta^2}{3} \frac{\theta^4}{45}$ approximately. 4
 - (b) Show that $\frac{\pi^2}{2 \cdot 4} \frac{\pi^4}{2 \cdot 4 \cdot 6 \cdot 8} + \frac{\pi^6}{2 \cdot 4 \cdot 6 \cdot 8 \cdot 10 \cdot 12} \dots = 1$
 - (c) Expand $\sin^7 \theta$ in a series of sines of multiple of θ

UNIT-V

- 9. (a) Prove that $\sin^{-1}(\csc\theta) = \{2n + (-1)^n\} \frac{\pi}{2} + i(-1)^n \log \cot \frac{\theta}{2}$
 - (b) Prove that $\frac{\pi}{8} = \frac{1}{1 \cdot 3} + \frac{1}{5 \cdot 7} + \frac{1}{9 \cdot 11} + \dots \infty$.

5

- (c) Sum the series $\sin \alpha + \sin (\alpha + \beta) + \sin (\alpha + 2\beta) + \cdots$ to *n* terms.
- 10. (a) Use the Euler's exponential values to prove that

 $\cos x - \cos y = 2\sin\frac{1}{2}(x+y)\sin\frac{1}{2}(y-x)$ 4

(b) Resolve $\tanh(\alpha + i\beta)$ into real and imaginary parts. 5

(c) Prove that
$$\log\left(\frac{1}{1-e^{i\alpha}}\right) = \log\left(\frac{1}{2}\csc\frac{\alpha}{2}\right) + i\left(\frac{\pi}{2} - \frac{\alpha}{2}\right)$$
 5