2022 B.A./B.Sc. Fourth Semester CORE - 8 MATHEMATICS Course Code: MAC 4.11 (Numerical Methods)

Total Mark: 70 Time: 3 hours Pass Mark: 28

7

5

Answer five questions, taking one from each unit. Note: Scientific, non-programmable calculators are allowed

UNIT-I

- 1. (a) Define an algorithm. Write an algorithm to determine if a positive integer is prime or not.
 - (b) Find the sum of the numbers 0.1532, 15.45, 0.000354, 305.1,8.12,143.3, 0.0212, 0.643 and 0.1734, where each number is correct to the digits given. Estimate the absolute error in the sum.
 - (c) If an approximate value of π is given by $x_1 = \frac{22}{7} = 3.142857$ and

its true value is x = 3.1415926, find the absolute and relative errors.

- 2. (a) Define the term absolute error. Given $c = 15300 \pm 100$, find the maximum value of the absolute error in c^3 .
 - (b) Evaluate the sum $S = \sqrt{3} + \sqrt{5} + \sqrt{7}$ to 4 significant digits and find its relative error. 3
 - (c) Write an algorithm to compute the real roots of the quadratic equation $ax^2 + bx + c = 0$ 7

UNIT-II

3. (a) Apply secant method to determine a root of the equation f(x) = cos x - xe^x = 0 by taking the initial approximations x₀ = 0, x₁ = 1. Perform three iterations.
(b) Define Rate of convergence. Show that the Newton-Raphson's Method has second order convergence.
4. (a) Find the iterative methods based on Newton-Raphson method for finding N^{1/3}, where N is a positive real number. Apply the method to N = 18 to obtain the result, performing four iterations.
(b) Find the interval in which the smallest positive root of the equation x³ - x - 4 = 0 lie. Determine the root using the bisection method. Perform four iterations.

UNIT-III

- 5. (a) Solve the following system of equations using the Gauss elimination method with partial pivoting:
 - $\begin{bmatrix} 2 & 2 & 1 \\ 4 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ 5
 - (b) Prove that the Gauss Jacobi iteration method for the solution Ax = bconverges to the exact solution for any initial vector if ||H|| < 1 5
 - (c) Show that the Gauss-Seidel method for solving the system of equations

$$\begin{bmatrix} 1 & 2 & 4 \\ 2 & 1 & 2 \\ 4 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -1 \\ 5 \\ 3 \end{bmatrix}$$
diverges. 4

6. (a) Solve the system of equations Ax = b, where

$$A = \begin{bmatrix} 2 & 1 & 1 & -2 \\ 4 & 0 & 2 & 1 \\ 3 & 2 & 2 & 0 \\ 1 & 3 & 2 & -1 \end{bmatrix}, b = \begin{bmatrix} -10 \\ 8 \\ 7 \\ -5 \end{bmatrix}, \text{ using the LU decomposition}$$

method. Take all the diagonal elements of L as 1. Also find A^{-1} 7 (b) Solve the system of equations:

$$2x_{1} - x_{2} = 7$$
$$-x_{1} + 2x_{2} - x_{3} = 1$$
$$-x_{2} + 2x_{3} = 1$$

using the Gauss-Seidel method taking the initial approximation as $x^{(0)} = 0$ and perform three iterations.

7

5

5

UNIT-IV

7.	(a)	Derive the Lagrange linear interpolation formula.	4
	(b)	Taking the interval of difference as unity, evaluate the following (a	
		and <i>b</i> are constants)	5

- (i) $\Delta \tan(ax)$
- (ii) $\Delta^n(e^{ax+b})$
- (c) Given that $y_{35.0} = 1175$, $y_{35.5} = 1280$, $y_{39.5} = 2180$, $y_{40.5} = 2420$, obtain a value for y_{40} .
- 8. (a) Establish the following relations:

(i)
$$\Delta = \frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{1}{4}\delta^2}$$

(ii)
$$\Delta + \nabla \equiv \Delta / \nabla - \nabla / \Delta$$

(b) For the following data, calculate the differences and obtain the Gregory-Newton forward difference polynomial. Interpolate at x = 0.25.

X	:	0.1	0.2	0.3	0.4	0.5
f(x)) :	1.40	1.56	1.76	2.00	2.28
(c)Find the	em	nissing te	erm in th	e follow	4	
Х	:	0	1	2	3	4
у	:	1	3	9		81

UNIT-V

9. (a) Find from the following table, the area bounded by the curve and the x-axis from x = 7.47 to x = 7.525 x : 7.47 7.48 7.48 7.50 7.51 7.52 1.98 f(x): 1.93 1.95 2.01 2.06 2.03 (b) Use Simpson's three-eight rule to obtain the value of

$$\int_{0}^{0.3} \left(1 - 8x^3\right)^{1/2} dx$$
 5

(c) Using Euler's method, solve the differential equation y' = -y with the condition y(0) = 1.

10. (a) A river is 80 feet wide. The depth d (in feet) of the river at a distance x from one bank is given by the following table:

x :	0	10	20	30	40	50	60	70	80
d :	0	4	7	9	12	15	14	8	3
Find approximately the area of the cross section of the river using									

these data.

(b) Given $\frac{dy}{dx} = 1 + y^2$, where y = 0 when x = 0, find y(0.2), y(0.4)

and y(0.6) using the classical Runge-Kutta fourth order method.

7

7

5