2022

B.A/B.Sc. Fourth Semester CORE – 10 MATHEMATICS Course Code: MAC 4.31 (Ring Theory & Linear Algebra – I)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Show that a Boolean ring is commutative.	4
	(b)	Define subring of a ring R and prove that the intersection of two	
		subrings of a ring R is also a subring of R	5
	(c)	Prove that every finite integral domain is a field.	5
2.	(a)	Prove that a commutative ring R is an integral domain if and only if	
		for all $a, b, c \in R(a \neq 0), ab = ac \Longrightarrow b = c$	4
	(b)	Define centre of a ring R and prove that it is a subring of R	5
	(c)	Define characteristic of a ring R and prove that the characteristic of	
		an integral domain is either zero or a prime.	5

UNIT – II

- 3. (a) Define product of two ideals of a ring R and prove that the product of two ideals of a ring R is also an ideal of R. 5
 - (b) Define prime ideal of a ring R and prove that P is prime ideal of R if

and only if
$$\frac{R}{P}$$
 is an integral domain. 6

(c) If A is a left ideal and B is a right ideal of a ring R, show that A+B may not be an ideal of R3

- 4. (a) Prove that the intersection of two ideals of a ring R is also an ideal of R.
 - (b) Define maximal ideal of a ring R and prove that M is maximal ideal of R if and only if $\frac{R}{M}$ is a field. 6

4

(c) If S is a non-empty subset of a ring R, show that the right annihilator of S is a right ideal of R. 4

UNIT – III

5.	(a)	Define ring homomorphism. If R and R' are two rings and	
		$f: R \rightarrow R'$ is a ring homomorphism, prove that kernel of f is an	
		ideal of R.	4
	(b)	State and prove the fundamental theorem of ring homomorphism.	7
	(c)	If $f : R \rightarrow R'$ is an onto homomorphism, where R is a ring with	
		unity, show that $f(1)$ is the unity of R'.	3
6.	(a)	If \mathbb{Z} is the ring of integers, show that the only homomorphisms from	n
		$\mathbb{Z} \to \mathbb{Z}$ are the identity and zero mappings.	3
	(b)	Prove that an integral domain can be embedded into a field.	8
	(c)	If $f: R \to R'$ is a ring homomorphism, prove that ker $f = \{0\}$ if	
		and only if f is one-one, where ker ker f is the kernel of f.	3

UNIT – IV

7.	(a)	Prove that the union of two subspaces of a vector space V is a subspace of V if and only if one is contained in the other.	5
	(b)	Examine whether the vectors $(2,3,-1)$, $(-1,4,2)$, $(1,18,-4)$ are linearly independent or not in \mathbb{R}^3 over \mathbb{R} .	3
	(c)	Prove that the set of non-zero vectors $v_1, v_2,, v_n$ of a vector space V over a field F is linearly dependent if and only if some $v_r, 2 \le r \le n$ is a linear combination of the preceding ones.	6
8.		Prove that there exists a basis for every finite dimensional vector space. Prove that the intersection of two subspaces of a vector space V is	6
	(0)	also a subspace of V.	4

(c) Show that the set $\{(1,2,1),(2,1,0),(1,-1,2)\}$ forms a basis of \mathbb{R}^3 over \mathbb{R} . 4

UNIT - V

- (a) Define linear transformation, null space, range, rank and nullity of a 9. linear transformation. 3 7
 - (b) State and prove the Rank-Nullity theorem.
 - (c) Find the matrix representation of the linear map $T : \mathbb{R}^3 \to \mathbb{R}^3$ given by T(x, y, z) = (z, y + z, x + y + z) relative to the basis $\{(1,0,1),(-1,2,1),(2,1,1)\}.$ 4
- 10. (a) If V and W are two vector spaces and $T: V \rightarrow W$ is an onto linear transformation, prove that $\frac{V}{\ker T} \cong W$, where ker T is the kernel of T. 6
 - (b) Prove that two finite dimensional vector spaces are isomorphic if and only if they have the same dimension. 8