2022 B.A./B.Sc. **Fourth Semester** CORE - 10**CHEMISTRY** Course Code: CHC 4.31 (Physical Chemistry-IV)

Total Mark: 70 *Time: 3 hours*

Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Define the terms equivalent and molar conductance.	3
	(b)	State Kohlrausch's law. The molar conductance of sodium acetate,	
		HCl and NaCl at infinite dilution are 91.0×10^{-4} , 426.16×10^{-4} and	
		126.45×10 ⁻⁴ Sm ² mol ⁻¹ respectively at 25°C. Calculate the molar	
		conductance at infinite dilution for acetic acid. 1+4=	=5
	(c)	Discuss in detail the Debye-Hückel theory of strong electrolytes.	6
2.	(a)	Define transport number. Calculate the transport number of Li^+ and	
		Br-ions when a current flows through an infinitely dilute aqueous	
		solution of LiBr at 25°C, given the ionic mobilities of Li ⁺ and Br ⁻ ion	S
		at infinite dilution are 4.01×10^{-8} and $8.09 \times 10^{-8} m^2 V^{-1} S^{-1}$	
		respectively. 1+2=	=3
	(b)	Explain the Ostwald's law. Write its uses and limitation.	5
	(c)	How will you determine transport number by moving boundary	
	~ /	method?	6

6

UNIT-II

3. (a) Derive the expression for Nernst equation in terms of effect of electrolyte concentration on electrode potential. 4

(b) Calculate the equilibrium constant of cell reaction

 $2Ag^++Zn \leftrightarrow 2Ag+Zn^{2+}$ occurring in the zinc-silver cell at 25°C when $[Zn^{2+}] = 0.01M$ and $[Ag^+] = 10M$. The EMF of the cell is found to be 1.62 volts. 4

(c) Explain the following terms with relevant examples: $2 \times 3=6$

- (i) Reversible cells
- (ii) Irreversible cells
- (iii) Reference cell
- 4. (a) State the two Faradays law of electrolysis. Suggest the application of these laws.
 - (b) Differentiate the terms electrolytic and Galvanic cells with suitable examples.
 4

 $2 \times 3 = 6$

- (c) Write short notes on the following:
 - (i) Half-cell potential
 - (ii) Reduction potential
 - (iii) EMF

UNIT-III

5.	(a)	Give the postulates of quantum mechanics.	4
	(b)	Write the derivation of radial part of Schrodinger equation.	5
	(c)	Give the properties of wave functions. What is an orthogonal wave	
		function?	3
	(d)	What are operators? Explain.	2
6.	(a)	Discuss the probability distribution function quantum mechanically.	6
	(b)	Derive an expression for free particle using Schrodinger equation.	3
	(c)	Explain the average and most probable distances of the electron fro	m
		the nucleus.	4
	(d)	What is meant by quantization of energy?	1

UNIT-IV

7. (a) Mention and explain all types of molecular spectra state and express Born-Oppenheimer approximation. 3+2=5

	(b)	Give a vibrational-rotational energy level of a diatomic molecul	le
		taking it as a simple harmonic oscillator.	5
	(c)	Define Raman spectra. Write a short note on the three lines in I	Raman
		spectra.	4
8.	(a)	Show how to determine the bond length of a linear triatomic me	olecule
		using rotational spectra.	6
	(b)	Give the experimental set up of Raman spectroscopy and state	the
		rules of mutual exclusion.	4+1=5
	(c)	With the help of a diagram explain absorption and emission	
	. ,	spectroscopy.	3

UNIT-V

9.		Explain polarization of a molecule in a magnetic field. Derive the expression for Clausius-Mossotti equation.	4 5
	(c)	Molar polarization of diethyl ether on dissolving in it cyclohexane at 20°C was found to be 58.50 cm ³ mol ⁻¹ . The molar refraction was found to be 22.40 cm ³ mol ⁻¹ . Applying 5% correction to molar refractivity (Rm), calculate the dipole moment of diethyl ether.	5
10.	. (a)	Describe the temperature method for measurement of dipole mome	nt
		of a molecule.	5
	(b)	Discuss the important application of dipole moment in chemistry.	5
	(c)	How will you obtain Debye equation using induced polarization and	ł
		orientation polarizability.	4