2022

B.A./B.Sc. **Second Semester GENERIC ELECTIVE – 2 MATHEMATICS** Course Code: MAG 2.11 (Algebra)

Total Mark: 70 *Time: 3 hours*

Pass Mark: 28

6

Answer five questions, taking one from each unit.

UNIT-I

1. (a) If
$$x, y \in \mathbb{R}$$
 then prove that $|x - y| \ge ||x| - |y||$ 3

(b) Show that
$$\frac{n+1}{2n+1} \rightarrow \frac{1}{2}$$
 as $n \rightarrow \infty$ 3

(c) Prove that a sequence
$$\{x_n\}$$
 can have at most one limit. 6

(d) Find the *n*th term of
$$\left\{\frac{1}{2}, \frac{2}{5}, \frac{4}{10}, \cdots\right\}$$
 2

1

2. (a) Show that the sequence
$$\{x_n\}$$
 where $x_n = \left(1 + \frac{1}{n}\right)^n$ is monotone increasing and bounded and hence converges.

(b) Solve
$$\lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2} \right)$$
 3

(c) Show that
$$\left\{\sqrt[3]{n-2}\right\}$$
 diverges to infinity. 3

(d) Find the
$$n^{\text{th}}$$
 term of $\left\{\frac{2}{3\cdot 4}, \frac{3}{4\cdot 5}, \frac{4}{5\cdot 6}, \cdots\right\}$ 2

UNIT-II

3. (a) Check the convergence or divergence of the series

$$\frac{1}{1\cdot 2\cdot 3} + \frac{1}{2\cdot 3\cdot 4} + \frac{1}{3\cdot 4\cdot 5} + \dots + \frac{1}{n(n+1)(n+2)} + \dots$$
 6

(b) Prove by comparison test that the series

$$\frac{1}{1\cdot 3} + \frac{2}{3\cdot 5} + \frac{3}{5\cdot 7} + \frac{4}{7\cdot 9} + \dots \text{ is divergent.}$$
3

(c) Test the convergence of the series
$$\sum_{n=1}^{\infty} \left(\sqrt{n^4 + 1} - \sqrt{n^4 - 1} \right)$$
 5

4. (a) Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent for

$$0$$

(b) Show that the series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2}$$
 is absolutely convergent. 3

(c) Use integral test to show that the series $\frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5} + \cdots$ is convergent or divergent. 5

UNIT-III

(b) Transform the equation into an equation lacking the third term.

$$x^4 - 4x^3 - 18x^2 - 3x + 2 = 0 6$$

2

4

2

(c) If α , β , γ be the roots of $x^3 + x + 1 = 0$, prove that $\alpha^2 + \beta^2 + \gamma^2 = -2$

UNIT-IV

7. (a) Define an operation * on \mathbb{R} in the following way. $\forall x, y \in \mathbb{R}, x * y = xy + 1.$ Show that the operation is commutative but not associative.

- (b) Show that the set of integers form an abelian group with respect to the binary operation * defined by $a * b = a + b + 1 \quad \forall a, b \in \mathbb{Z}$ 4
- (c) Let G be the additive group of all integers. Prove that the set of all multiples of integer by a fixed integer m is a subgroup of G. 4
- (d) Consider the group $(\mathbb{Z}_4, +_4)$, where $\mathbb{Z}_4 = \{0, 1, 2, 3\}$. Find the order of each element.
- 8. (a) Show that the group $G = (\{1, 2, 3, 4, 5, 6\}, \times_7)$ is cyclic. How many generators of *G* are there? 4
 - (b) Let *G* be a group of nonzero complex numbers (a+ib) such that $a, b \in \mathbb{R}$ under the operation of multiplication of complex numbers. Let $H = \{a+ib \in G / a^2 + b^2 = 1\}$. Show that *H* is a subgroup of *G*. 6
 - (c) If H, K are two subgroups of a group G then prove that HK is a subgroup of G if and only if HK = KH.

UNIT-V

9. (a) Prove that, if G is an abelian group, then for all $a, b \in G$ and all integers n, $(ab)^n = a^n b^n$ 4

<i>HK</i> and using Lagrange's theorem prove that HK is not a subgroup of S_3 Prove that any two left (right) cosets of a subgroup are either identical or disjoint.	5 5
Prove that any two left (right) cosets of a subgroup are either	5
dentical or disjoint	
	5
Find all the cosets of $3\mathbb{Z}$ in the group $(\mathbb{Z}, +)$	4
Prove that every group of prime order is cyclic.	4
Express $\psi = (12345)(123)(45) \in S_5$ as the product of disjoint	-
cycles and find the order.	4
Find the number of generators of the group $(\mathbb{Z}_{12},+_{12})$	2
E	Prove that every group of prime order is cyclic. Express $\psi = (12345)(123)(45) \in S_5$ as the product of disjoint cycles and find the order.