2022 B.A./B.Sc. Second Semester CORE -- 4 MATHEMATICS Course Code: MAC 2.21 (Differential Equations)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1. (a) Determine the constant A such that the equation

 $(Ax^{2}y+2y^{2})dx+(x^{3}+4xy)dy=0$ is exact and solve the resulting exact equation. 2+2=4

(b) Solve:
$$(x^2y - 2xy^2)dx = (x^3 - 3x^2y)dy$$
 5

(c) Solve:
$$x \frac{dy}{dx} + y = y^2 \ln x$$
 5

2. (a) Solve:
$$\sqrt{1+x^2}\sqrt{1+y^2}dx + xydy = 0$$
 4

(b) Solve:
$$\frac{dy}{dx} = \frac{x - y + 3}{2(x - y) + 5}$$
 5

(c) Solve:
$$(1+x^2)\frac{dy}{dx} + 2xy - 4x^2 = 0$$
 5

UNIT-II

- 3. (a) Polonium-210 has a half-life of 140 days. Suppose a sample of this substance has a mass of 300 mg.
 - (i) Find a function that models that amount of sample remaining at time *t*. 3

(ii) Find the mass remaining after one year.	2
(iii) How long will it take for the sample to decay to a mass of	
200 mg?	2
(b) In a fish farm, fishes are harvested at a constant rate of 2100 fish p	ber
week. The per capita death rate for the fish is 0.2 fish per day per	
fish and per capita birth rate is 0.7 fish per day per fish.	
(i) Write down the word equation and differential equation for the)
rate of change of fish population.	5
(ii) Find equilibrium fish population.	2

- 4. (a) By using compartmental diagram, develop a mathematical model that describes drug assimilation into the blood in case of a single cold pill. 7
 - (b) A culture starts with 10,000 bacteria, and the number doubles every 40 minutes.
 - (i) Find a function that models the number of bacteria in time t. 4
 - (ii) After how much time will there be 50,000 bacteria? 3

UNIT-III

5. (a) Show that
$$x^2$$
 and $\frac{1}{x^2}$ are linearly independent solutions of the

differential equation $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - 4y = 0$. Also find the solution

that satisfies the conditions y(2) = 3, y'(2) = -1. 4+2=6

- (b) If y_1 and y_2 are two solutions of $\frac{d^2y}{dx^2} + p(x)\frac{dy}{dx} + q(x)y = 0$ then prove that $y = c_1y_1 + c_2y_2$ is also a solution of the given differential
 - equation for any arbitrary constants c_1 and c_2 .
- (c) If W(x) is the Wronskian of two functions $\phi_1(x)$ and $\phi_2(x)$, show

that
$$\phi_1 W\left(\frac{\phi_2}{\phi_1}, \phi_1\right) + \phi_2 W\left(\frac{\phi_1}{\phi_2}, \phi_2\right) = \frac{d}{dx}(\phi_1 \phi_2).$$
 4

- 6. (a) Given that y = x is a solution of $(x^2 + 1)\frac{d^2y}{dx^2} 2x\frac{dy}{dx} + 2y = 0$, find a linearly independent solution by reducing the order.
 - (b) If W(x) is the Wronskian of two functions $\phi_1(x)$ and $\phi_2(x)$ where α is a constant, show that

$$W(\phi_1 + \alpha, \phi_2 + \alpha) = W(\phi_1, \phi_2) + \alpha \frac{d}{dx}(\phi_1 - \phi_2).$$

$$4$$

6

5

(c) Show that e^{2x} and e^{3x} are linearly independent solutions of

$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 0 \text{ in the interval } -\infty < x < \infty \text{. Find the solution}$$

that satisfies the conditions $y(0) = 2, y'(0) = 3$. $2+2=4$

UNIT-IV

7. (a) Solve:
$$(D^2 + 7D + 10)y = 0$$
, given that $y(0) = -4$, $y'(0) = 2$ 5

$$\begin{bmatrix} \text{Symbol } D \text{ stands for } \frac{d}{dx} \end{bmatrix}$$
(b) Solve: $(D^2 - 4D + 4)y = x^3$
(c) Solve: $(D^2 + 2D + 2)y = e^{-x} \sin x$
4

8. (a) Solve:
$$(x^2D^2 - 3xD + 4)y = 2x^2$$

(b) Solve
$$(D^2 - 6D + 9)y = e^{3x}$$
 by using the method of undermined coefficients. 4

(c) Solve
$$(D^2 - 2D + 1)y = \frac{e^x}{x^2 + 1}$$
 by using the method of variation of parameters. 5

UNIT-V

9. (a) Define an equilibrium point. Determine the nature of the equilibrium

point for the linear system
$$\frac{dx}{dt} = 3x + 4y, \frac{dy}{dt} = 3x + 2y.$$
 1+4=5

- (b) Develop a mathematical model to describe the predator-prey system and discuss the behaviour of its equilibrium points. 5+4=9
- 10. (a) A simple model describing jungle warfare with one army exposed to random fire and the other to aimed fire is given by coupled differential equations

$$\frac{dR}{dt} = -c_1 RB, \ \frac{dB}{dt} = -c_2 R$$
, where c_1, c_2 are positive constants.

- (i) Use chain rule to find a relation between *B* and *R*, given the initial numbers of blue and red soldiers are b_0 and r_0 respectively.
- (ii) Given that initially both blue and red armies have 1000 soldiers and the constants c_1 and c_2 are 10^{-4} and 10^{-1} respectively. Determine how many soldiers are left if the battle is fought so that all the soldiers of one army killed. 4+3=7
- (b) The epidemic model for infectious disease is given by $\frac{dS}{dt} = -\beta SI$

and $\frac{dI}{dt} = \beta SI - \gamma I$, where the symbols have their usual meaning.

Find a relation between *I* in terms of *S*, given that the initial number of susceptible is s_0 and the initial number of contagious infective is i_0 . Also sketch the phase-plan trajectories.

 $[\ln 2 = 0.693147, \ln 3 = 1.098612, \ln 5 = 1.609438]$ 5+2=7