2022

B.A./B.Sc.

Second Semester

CORE - 4

CHEMISTRY

Course Code: CHC 2.21 (Physical Chemistry – II)

Total Mark: 70 Pass Mark: 28

Time: 3 hours

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Differentiate between intensive and extensive properties. Classi	fy the
		following properties in these two categories:	2+2=4
		(i) Mass (ii) Time	
		(iii) Free energy (iv) Specific heat	
	(b)	State and explain the zeroth law of thermodynamics.	3
	(c)	One mole of an ideal gas expands isothermally and reversibly fi	rom
		1 litre to 100 litres at 27°C. Calculate w, q, Δ U and Δ H.	4
	(d)	Define molar heat capacity at constant volume C_v and at constant	ant
		pressure C_p for a gas. Show that C_p – C_v = R .	3
2.	(a)	Distinguish between open, closed and isolated system. Give	
	()	examples.	3
	(b)	Discuss the thermodynamic scale of temperature.	3
	(c)	Explain entropy changes in reversible and irreversible processe	es.
		Comment on the statement "Entropy of the universe is always	
		increasing."	4
	(d)	Calculate the entropy change in the thermodynamic expansion	of
		2 moles of gas from:	$2\times2=4$
		(i) a volume of 5 litres to 50 litres at 303 K.	
		(ii) from a pressure of 10 atmosphere to a pressure of 2 atmos at 293 K.	phere

UNIT-II

3.	` /	State and explain the third law of thermodynamics.	3
	, ,	The heat of combustion of ethyl alcohol is -330 kcal. If the heat of formation of $CO_2(g)$ and $H_2O(l)$ be -94.3 kcal and -68.5 kcal respectively, calculate the heat of formation of ethyl alcohol. The heat of combustion of carbon monoxide at constant v and at 17° C is -283.3 kJ. Calculate its heat of combustion at constant	4
		pressure. $(R = 8.314 \text{ J degree}^{-1} \text{ mol}^{-1})$	4
	(d)	Explain the Hess's law of constant heat summation.	3
4.	` ′	Discuss the variation of heat of reaction with temperature.	5
	(0)	Calculate the enthalpy of formation of ammonia from the following bond energy data: $(N-H) = 389 \text{ kJ/mol}$ $(H-H) = 435 \text{ kJ/mol}$	5
		$(N \equiv N) = 945.36 \text{ kJ/mol}$	
	(c)	The enthalpies of combustion of C, H and sucrose are -393.5 , -286.2 and -5644.2 kJ/mol respectively. Calculate the enthalpy of formation of sucrose($C_{12}H_{22}O_{11}$).	4
		UNIT-III	
5.	(a)	Derive an expression for variation of entropy with P, T, V.	5
	(b)	Discuss the Maxwell's relationship.	5
	(c)	What are partial molar properties? Explain.	2
	(d)	Derive the Gibbs-Duhem equation.	2
6.	(a)	Give the expression of work function with variation in T and V.	4
	(b)	Discuss the thermodynamic equation of state.	6
	(c)	Write a note on change in thermodynamic functions in mixing of idea gases.	al 4
		UNIT-IV	
7	(6)		
7.	(a)	Explain the fugacity mole fraction relationship for real and ideal gases.	5

	(b)	The value of K_p at 20°C for the reaction $2NO(g)+Cl_2(g) \rightleftharpoons 2NOCl(g) \text{ is } 1.9 \times 10^3 \text{ atm}^{-1}.$	
	(c)		3
8.	(a)	Derive the relationship between free energy and the equilibrium constant.	5
	(b)	State Le Chatelier's principle and predict the effect of temperature and pressure on the following reactions: (i) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) \Delta H = -22.0 \text{ kcal}$	5
	(c)	(ii) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ $\Delta H = -43.0 \text{ kcal}$	4
		UNIT-V	
9.	` /	State and explain the Raoult's law with mathematical expressions. Acetone boils at 56.3°C and a solution of 1.41 grams of an organic solid in 20 grams of acetone boils at 56.86°C. If K for acetone per 100 g is 16.7, calculate the mass of one mole of the organic solid.	
	(c)	Define vapour pressure of a liquid. Give its thermodynamic derivation using chemical potential in terms of molar mass determination of	3 n 7
10.	(b)	0.440 g of a substance dissolved in 22.2 g of benzene lowered the freezing point of benzene by 0.567° C. Calculate the molecular mass of the substance. ($K_f = 5.12^{\circ}$ C mol ⁻¹)	5
	` '		3
	(u)	Explain how Raoult's law and Henry's law are related in ideal solution.	3