2022

B.A./B.Sc. Second Semester CORE – 3 PHYSICS Course Code:PHC 2.11

(Electricity & Magnetism)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Calculate the electric field intensity on the surface of uranium nucleus whose atomic number Z is 92. The nuclear radius of uranium is	
		7×10^{-15} m.	3
	(b)	Derive the expression of mechanical force per unit area on the	
		surface of a charged conductor.	5
	(c)	Using Gauss' law, find the electric field due to a uniformly charged	
	. ,	solid sphere.	6
2.	(a)	A dipole consisting of charges -3.0 nC and $+3.0$ nC separated by distance of 5.0 mm is situated in a uniform electric field of 6.0×10^{5}	
		NC ⁻¹ at an angle 30° with the field. Calculate the dipole moment and the torque acting on it	1 2
		the torque acting on it.	5
	(b)	Derive the expression of electrostatic energy of a charged sphere.	5
	(c)	Find the electrostatic potential due to an electric dipole and discuss	
		its special cases.	6

UNIT-II

3. (a) For a point charge placed near an infinite grounded conducting plane, find the electric potential and field strength at any point due to a point charge q using the method of electrical image. Also determine the electric field, surface charge density and total induced charge on the conductor. 5+6=11

- (b) A parallel-plate capacitor consists of two plates of area 500 cm², separated by a thin sheet of mica of thickness 0.075 mm. What is the capacitance in practical unit? Given that relative permittivity of mica is 6.5.
- 4. (a) Assuming the earth to be a spherical conductor of radius 6400 km, calculate its capacitance. 3
 - (b) What is polarization is dielectrics? Show that $D = \varepsilon_0 E + P = \sigma$, where the symbols have their usual meaning in dielectrics. 1+3=4
 - (c) What is a capacitor? Find the capacitance of a parallel plate capacitor filled with composite dielectric. How will the capacitance change when it is filled with a single dielectric slab?
 1+4+2=7

UNIT-III

- 5. (a) Two infinitely long straight parallel wires separated by a distance of
 3 cm carry currents of 4 A and 6 A respectively in the same direction.
 Find the force per unit length between the two wires. Is the force
 attractive or repulsive? 3
 - (b) What is Lorentz force? Derive the expression of force on a current carrying conductor placed in a magnetic field.
 - (c) State Biot-Savart's law. Derive the expression of magnetic field on the axis of a circular current loop using Biot-Savart's law. 1+6=7
- 6. (a) The magnetic field inside a 0.5 m long solenoid which has 500 turns is 2.52×10^{-3} T. Find the current in the solenoid.
 - (b) State and prove Ampere's circuital law. Express Ampere's circuital law in differential form. 5
 - (c) Derive the expression of torque on a current loop placed in a uniform magnetic field. 6

UNIT-IV

7. (a) A 10 ohm resistance coil has 1000 turns and at a certain time, 5.5×10^{-4} Wb of flux passes through it. If the flux falls to 0.5×10^{-4} Wb in 0.1 second, find the emf generated and the charge flowing through the coil. 4

	(b) Describe how Maxwell modified Ampere's circuital law for va currents.(c) Discuss the growth process of current in LR circuit.	rying 5 5		
8.	 (a) What is mutual inductance? If a current of 3 ampere in one concauses the flux in another coil of 1000 turns to change by 10⁻⁴ each turn, then what is the mutual inductance? (b) State and explain Kirchhoff's laws with suitable illustrations. (c) Describe a parallel resonant circuit and show that 			
	$f_r = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$ where the symbols have their usual meaning.	6		
UNIT-V				
9.	(a) Discuss how matrix method is used in circuit analysis.(b) State and prove Thevenin's and Norton's theorem.	4 5+5=10		
10.	(a) State and prove reciprocity theorem.(b) Describe the working principle and theory of a ballistic galvan	4 ometer. 10		