2022

B.A./B.Sc. Second Semester CORE – 3 MATHEMATICS Course Code: MAC 2.11 (Real Analysis)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a) State and prove the triangular inequality.(b) Show that the union of two disjoint denumberable sets is	4			
	denumerable.	5			
	(c) Show that the infimum of $S = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$ is 0.	5			
2.	(a) Show that the set of even integers is denumerable.	5			
	(b) Find all $x \in \mathbb{R}$ that satisfy the inequality $4 < x+2 + x-1 < 5$.	4			
	(c) Let S be a non-empty set in \mathbb{R} which is bounded above. Prove the	at			
	an upper bound u of S is the supremum if and only if for every $\varepsilon > 0$				
	there exists $s \in S$ such that $u - \varepsilon < s$.	5			
UNIT–II					

3. (a) Let S be a nonempty subset of \mathbb{R} that is bounded below. Prove that $\inf S = -\sup \{-s : s \in S\}.$ 7

(b) Let
$$A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$$
. What are the isolated points of *A*? Justify your answer. 7

4.	(a) Prove that every neighbourhood of a limit point of a set contains	
	infintely many points of the set.	6
	(b) Prove that \mathbb{R} is not countable.	8

UNIT-III

5. (a) Let (x_n) and (y_n) be sequences converging to x and y respectively. Prove that $(x_n y_n)$ converges to xy. 5

(b) If
$$0 < a < 1, b > 1$$
, discuss the convergence of $\left(\frac{b^n}{n!}\right)$. 4

- (c) Let $x_1 = 1$ and $x_{n+1} = \sqrt{2 + x_n}$ for $n \in \mathbb{N}$. Show that (x_n) is convergent and find the limit.
- 6. (a) Using the definition of the limit of a sequence, show that

(i)
$$\lim_{n \to 1} \left(\frac{2n}{n+1} \right) = 2$$
 (ii) $\lim_{n \to 1} \left(\sqrt{n+1} - \sqrt{n} \right) = 0$ 6

5

6

(b) State and prove the monotone convergence theorem. 8

UNIT-IV

- 7. (a) Show that the sequence $\left(1 \left(-1\right)^n + \frac{1}{n}\right)$ is divergent. 5
 - (b) Prove that every sequence of real numbers has a monotone subsequence.

(c) Show that
$$\left(\frac{1}{n}\right)$$
 is a Cauchy sequence. 3

8. (a) Show directly from the definition that $\left(1 + \frac{1}{2!} + \dots + \frac{1}{n!}\right)$ is a Cauchy sequence.

(b) Let (x_n) be a Cauchy sequence such that x_n is an integer for even	ery
$n \in \mathbb{N}$. Show that (x_n) is ultimately constant.	6
 (c) Give two examples of unbounded sequences that have convergen subsequences. 	t 2

UNIT-V

9.	(a)	Define an infinite series. Give an example each of a convergent and	da
		divergent series.	4
	(b)	Show that the <i>p</i> -series convergess when $p > 1$.	5
	(c)	If a series is absolutely convergent in $\mathbb R$, then prove that it is	
		convergent. Does the converse of he statement hold? Justify.	5

- 10. (a) Discuss the convergence or divergence of the following series whose *n*th term is: 6
 - (i) $n^n e^{-n}$ (ii) $\frac{n!}{n^n}$

(iii) $(n \ln n)^{-1}$

(b) If $\sum x_n$ with $x_n > 0$ is convergent, then is $\sum \sqrt{x_n}$ always convergent? Either prove it or give a counter example.

(c) Does the series
$$\sum_{n=0}^{\infty} \frac{\sqrt{n-1} - \sqrt{n}}{\sqrt{n}}$$
 converge? 4

4