2021

M.Sc.

Third Semester DISCIPLINE SPECIFIC ELECTIVE – 02 **PHYSICS**

Course Code: MPHD 3.21 (A) (Astronomy & Astrophysics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

6

Answer five questions, taking one from each unit.

UNIT–I

1.	(a) Describe the horizon system of coordinates with proper diagram.	
	Discuss its drawbacks.	6

- (b) Find the zenith distance and altitude at the upper culmination of the stars from the following data:
 - (i) Declination of star = $42^{\circ}15'$ N Latitude of the observer = $26^{\circ}40'$ N
 - (ii) Declination of star = $23^{\circ}20'$ N Latitude of the observer = $26^{\circ}40'$ N 4
- (c) Explain the formation of the seasons with proper diagram. 4
- 2. (a) Draw the celestial sphere and write celestial sphere's features on it.
 - (b) What are the various motions of earth? Explain them. 4
 - (c) How high is Sun at noon in Kohima on equinox and solstice (latitude of Kohima is 25.6° N)?
 4

UNIT-II

3.	(a)	The parallax angles of the Sun's neighbouring star, Alpha Centauri,	, is
		0.7453". Calculate its distance.	3
	(b)	The distance modulus of Vega is -0.5 . At what distance is it from	
		earth?	3
	(c)	The apparent magnitude of the Sun is -26.81 and that of the star	
		Sirius is -1.47 . Which one of them is brighter and by how much	
		amount?	4

- (d) Define the following termS for telescope
 - (i) resolving power and diffraction limit
 - (ii) magnifying power
 - (iii) light gathering power
- 4. (a) Show that the apparent magnitude (m) of a star depends on its intrinsic luminosity (L) and its distance (d).
 - (b) Calculate the diffraction limit of resolution of a telescope of 200 *inch* diameter for $\lambda = 457$ nm. Compare its light gathering power with a telescope of 200 mm diameter. 4
 - (c) Write short notes on
 - (i) CCD
 - (ii) Atmospheric scintillation

3+3

4

2+1+1=4

UNIT-III

5.	(a)	What are nebulae? Write the classification and distribution of galac nebulae.	tic 4
	(b)	What are variable stars? Discuss the various types of intrinsic	•
		variable stars in detail.	7
	(c)	Phobos (one of the moon of Mars) orbits Mars with an average	
		distance of about 9380 km from the centre of the planet and a	
		rotational period of about 7hr 39 min. Use this information to	
		estimate the total mass of the system.	3
6.	(a)	Discuss the period luminosity relation of Cepheid variables.	4
	(b)	The period of a Cepheid is 25.3 days in M100 and its apparent	
		magnitude is 25.3. Find its distance.	4
	(c)	Define specific intensity (I_{j}) , mean intensity (J_{j}) and radiation flux	
		density (F_{v}) and write its relations.	6
		·	

UNIT-IV

- 7. (a) What is the polytrope model of a star? Derive the Lane-Emden equation and find its solution for n = 0.
 (b) The life time of a star (τ) on main sequence is related to its mass (M) as τ ∝ M^{-2.5}. The estimated life time of the Sun on the main sequence is approximately 10¹⁰ years. Calculate the main sequence life time of a star of mass
 - (i) $10 M_s$

(ii) $0.5 M_s$ 4(c) Explain Hayashi line on H-R diagram.2

8. (a) Derive the following equations for stellar structure

(i)
$$\frac{dM(r)}{dr} = \rho(r) 4\pi r^{2}$$

(ii)
$$\frac{dL(r)}{dr} = \epsilon \rho(r) 4\pi r^{2}$$

7

(b) What is a H-R diagram? Explain briefly the stellar evolution with H-R diagram. 3+4=7

UNIT-V

- 9. (a) What is thermal Bremsstrahlung? Show that power radiated per unit frequency is independent of distance.
 - (b) Derive an expression for power radiated by a relativistic electron moving in a magnetic field.

6

8

6

10. (a) Discuss the Thomson scattering and show that
$$\sigma_T = \frac{8\pi}{3}r_0^2$$
; where

 r_0 is the classical electron radius.

(b) Explain the stellar evolution using H-R diagram and discuss the possible end stages of a star.