2021

M.Sc.

Third Semester

DISCIPLINE SPECIFIC ELECTIVE – 02

MATHEMATICS

Course Code: MMAD 3.21 (Tensor Analysis & Riemannian Geometry)

Total Mark: 70 Time: 3 hours Pass Mark: 28

6

6

3

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Prove the property that tensor law of transformation possesses the	
		group property.	3

- (b) Define contraction of a mixed tensor. By taking one example show that in the process of contraction, the rank of the tensor is reduced by two.
- (c) Prove that the set of n^3 functions A^{ijk} form the components of a tensor if $A^{ijk}B^p_{ij} = C^{pk}$ provided that B^p_{ij} is an arbitrary tensor

and C^{pk} is a tensor. What happens if B_{ij}^p is symmetrical in *i* and *j*? 5

- 2. (a) Define inner product of vectors. Prove that the inner product of covariant and contravariant vectors is a scalar invariant. Also state and prove the quotient law.
 - (b) If A^i is an arbitrary contravariant vector and $C_{ij}A^iA^j$ is an invariant, then show that $C_{ii}+C_{ij}$ is a covariant tensor of second order. 5
 - then show that $C_{ij} + C_{ji}$ is a covariant tensor of second order. (c) Prove that $A_{ij}B^iC^j$ is invariant if B^i and C^j are vectors and A^{ij} is a tensor.

UNIT-II

3.	(a)	Show that g_{ij} is a second rank covariant symmetric tensor. Show that the angle between the contravariant vectors is real when	6
	(b)	Show that the angle between the contravariant vectors is real when	
		the Riemannian metric is postive definite.	4
	~ /	Determine the metric tensor and its conjugate (reciprocal) tensor in cylindrical co-ordinates.	4

4. (a) Prove that the necessary and sufficient condition for the existence of an *n*-ply orthogonal system of co-ordinates hypersurfaces is that the

fundamental form must be of the form
$$ds^2 = \sum_{i=1}^{n} g_{ii} (dx^i)^2$$
. 5

- (b) Prove that the inclination θ of the two vectors has the same value whether they are regarded as vectors in V_n or as vectors in a Euclidean space S_m in which V_n is immersed.
- (c) Find out the line element on the surface of a sphere in a V_{2} .

UNIT-III

- (a) Define Christoffel symbols and obtain tensor laws of transformations 5. of these symbols. 6
 - (b) Prove that the laws of transformations of Christoffel symbols possess the group property. 5
 - (c) Prove that if A^{ij} is a symmetric tensor, then

$$A_{i,j}^{j} = \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{j}} \left(A_{i}^{j} \sqrt{g} \right) - \frac{1}{2} A^{jk} \frac{\partial g_{jk}}{\partial x^{i}}.$$
3

- 6. (a) Obtain the covariant derivative of A^{ij} .
 - (b) If ϕ is a scalar function of x^i , then prove that

$$\nabla^2 \phi = g^{ij} \left(\frac{\partial^2 \phi}{\partial x^i \partial x^j} - \frac{\partial \phi}{\partial x^i} \begin{cases} l \\ i \\ j \end{cases} \right) = \frac{1}{\sqrt{g}} \partial_i \left(\sqrt{g} g^{ij} \partial_j \phi \right).$$
 5

(c) Prove that $u \cdot \nabla u = -u \cdot curl u$ if u is a vector of constant magnitude. 3

UNIT-IV

- (a) Define geodesic. Find the differential equations of a geodesic using 7. the property that it is a path of maximum or minimum length joining the two points on it. 8
 - (b) Prove the necessary and sufficient conditions that the hypersurfaces

 ϕ = constant form a system of parallels is that $(\nabla \phi)^2 = 1$.

(a) Prove that if two vectors of constant magnitudes undergo parallel 8. displacement along a given curve, then they are inclined at a constant angle. 4

6

6

5

4

- (b) Show that the geodeics are auto parallel curves. Determine a relation between metric tensors a_{ij} and g_{ij} . 3+2=5
- (c) State and prove the fundamental theorem of Riemannian geometry. 5

UNIT-V

- 9. (a) Obtain an expression for Riemannian-Chrostoffel tensor of second kind.
 - (b) Prove that the curvature tensor of second kind can be contracted in two ways- one of these leads to zero and the other to a symmetric tensor.
- 10. (a) Define Ricci's coefficient of rotation. Obtain the necessary and sufficient conditions that a congruence be a geodesic congruence. 6
 - (b) Prove the necessary and sufficient conditions that n-1 congruences

 $e_{h|}$ of an orthogonal ennuple be canonical with respect to $e_{n|}$ are

$$\gamma_{nhk} = -\gamma_{nkh}; (h, k = 1, 2, ..., n-1 \text{ s.t. } h \neq k).$$
 8