2021

M.Sc.

Third Semester

CORE - 10

PHYSICS

Course Code: MPHC 3.21 (Atomic & Molecular Spectroscopy)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one form each unit.

UNIT-I

1.	(a)	How is fine structure produced in H_{α} spectrum?	4
	(b)	Obtain the condition which determines Sommerfeld allowed elliptica	ıl
		orbits in hydrogen atom.	10
2.	(a)	Describe the spectra of alkali atoms.	4
	(b)	Explain how Sommerfeld introduced relativistic correction to show	
		that the path of electron in an atom is a rosette.	10

UNIT-II

3.	(a)	Obtain the expression of moment of inertia and bond length of linear	
		triatomic molecule.	6
	(b)	Discuss Born Oppenheimer approximation.	8
4.	(a)	Using variation method, obtain the expression for ground state energy	y
		of hydrogen atom.	6
	(b)	Discuss the molecular orbital theory of hydrogen molecule ion and obtain the expression of energy in the symmetric and anti-symmetric	
		state.	8

UNIT-III

- 5. a) *HCl* molecule has a rotational constant *B* value of 1059.3 m^{-1} and a centrifugal distortion constant *D* of $5.3 \times 10^{-2} m^{-1}$. Estimate the vibrational frequency and force constant of the molecule. Given, mass of proton = $1.67 \times 10^{-27} kg$ and mass of chlorine = $58.5 \times 10^{-27} kg$ 4
 - (b) Discuss vibrational-rotational spectra and explain how P-branch and Q-branch of the spectra are obtained. 4

- (c) Discuss pure rotational spectra of a molecule as rigid rotator.
- 6. (a) The lines in the pure rotational spectrum of *HCl* are spaced as 20.8×10^2 per *metre*. Calculate the moment of inertia and the internuclear distance. Given that mass of proton = $1.67 \times 10^{-27} kg$ and mass of chlorine = $58.5 \times 10^{-27} kg$.
 - (b) Describe diatomic molecule as a non rigid rotator.

UNIT-IV

- 7. (a) When a nucleus interact with magnetic field, what is the interaction energy? Given that for a nucleus $g_I = 5.585$, $\mu_N = 5.05 \times 10^{-27} JT^{-1}$ and B = 2.3487 T, find the interaction energy and the ratio of population in the two states. 5
 - (b) Discuss nuclear magnetic resonance and the different modes of NMR instrumentation.
- 8. (a) Calculate the Larmor frequency of a nucleus when it is placed in a magnetic field of 1.0 *T*. Given that $g_I = 5.256$, $\mu_N = 5.0504 \times 10^{-27} JT^{-1}$. Also calculate relative population in the two spin states. 5
 - (b) Discuss the basic principle and theory of electron spin resonance.Explain how hyperfine structure is obtained in ESR spectroscopy.

UNIT-V

associated with the transition for a nuclei having spin $I = \frac{5}{2}$ 9

10. (a) The spin of ⁵⁹Co nucleus is $\frac{7}{2}$. Assuming axial field gradient, obtain

the expressions for frequencies of the quadrupole transitions.

(b) Discuss recoilless emission and absorption in Mössbauer spectroscopy and explain the experimental techniques of Mössbauer spectrometer.

9

5

5

6

10