2021

M.Sc. Third Semester CORE – 10 MATHEMATICS Course Code: MMAC 3.21 (Topology)

Total Mark: 70 Time: 3 hours Pass Mark: 28

5

Answer five questions, taking one form each unit.

UNIT-1

- 1. (a) Let X be a topological space. Suppose G is a collection of open sets of X such that for each open set U of X and each $x \in U$ there is an element C of G such that $x \in C \subset U$. Then prove that G is a basis for the topology of X. 5
 - (b) Show that the countable collection

 $B = \{(a,b) \mid a < b, a \text{ and } b \text{ are rational}\}$ is a basis that generates the

standard topology on $\mathbb R$.

- (c) If \mathbb{B} is a basis for the topology of *X* and \mathbb{C} is a basis for topology of *Y*, then prove that the collection $\mathbb{D} = \{B \times C / B \in \mathbb{B}, C \in \mathbb{C}\}$ is a basis for the topology on $X \times Y$.
- 2. (a) Let *Y* be a subspace of *X*. Prove that a set *A* is closed in *Y* if and only if it equals the intersection of a closed set in *X* with *Y*.
 5
 - (b) Let A be a subset of a topological space X. Prove that $x \in \overline{A}$ if and only if every open set U containing x intersects A.
 - (c) Let A be a subset of the topological space X; let A' be the set of all limit points of A. Prove that $\overline{A} = A \cup A'$.

UNIT-II

3. (a) Let *X* and *Y* be topological spaces; let $f : X \to Y$. Prove that the following statements are equivalent:

- (i) f is continuous
- (ii) For every subset A of X, $f(\overline{A}) \subset \overline{f(A)}$

(iii) For every closed set B of Y, $f^{-1}(B)$ is closed in X. 6

- (b) Define the following:
 - (i) Homeomorphism

(ii) Closed functions

- (iii) Open functions
- (iv) Topological property
- (c) Suppose $f: X \to Y$ is continuous. If x is a limit point of the subset A of X, is it necessarily true that f(x) is a limit point of f(A)? Justify. 4

4

4

- 4. (a) Prove that for functions $f : \mathbb{R} \to \mathbb{R}$, the $\varepsilon \delta$ definition of continuity implies the open set definition. 5
 - (b) Define topological imbedding.
 - (c) Define quotient map and quotient topology induced by a surjective map.

UNIT-III

5.	a)	Prove that if a topological space is 2 nd countable, then it is separabl	e
		and Lindelof.	6
	(b)	Prove that in a 1 st countable space, sequential continuity and	
		continuity are equivalent.	4
	(c)	Prove that the continuous image of a Lindelof space is Lindelof.	4
6.	(a)	Let X be a topological space. Prove that X is regular if and only if given a point $x \in X$ and an open set U of x, there is an open set V	
		such that $x \in V \subset \overline{V} \subset U$.	6
	(b)	In a first countable space prove that X is T_2 if and only if every	
		convergent sequence in X has a unique limit.	4
	(c)	Prove that a completely regular space is regular.	4

UNIT-IV

7.	(a) Prove the followings: (provide justification wherever it is necessary)	
	(i) closed subsets of compact space is compact	
	(ii) compactness is not an hereditary property $3+1=4$	4
	- 2 -	

	(b) Prove that a compact subset of a T_2 space is closed.	5
	(c) Prove that continuous image of a compact space is compact.	5
8.	(a) Prove that every compact Hausdroff space is normal.	6
	(b) Let X be limit point compact. If A is closed subset of X , does it	
	follow that A is limit point compact? Justify.	4
	(c) Let X be locally compact and T_2 . Let A be a subspace of X. If A is	
	closed in X or open in X, then prove that A is locally compact	4

UNIT-V

9.	(a)	Prove that if X is having a separation and Y is a connected subset of	E
		X, then Y has to entirely lie in one of the open sets of the separation	•
			5

(b)	Let	$\left\{A_{n}\right\}$	be a sequence of connected subspaces of X such that
-----	-----	------------------------	---

$A_n \cap A_{n+1} \neq \phi$ for all n. Show that $\bigcup A_n$ is connected.	5
(c) Let <i>A</i> be a connected subspace of <i>X</i> . If $A \subset B \subset \overline{A}$, then prove	
that <i>B</i> is also connected.	4
10. (a) Prove that each non-empty connected subspace of X intersects only	ly
one connected component of X.	5
(b) Define a path between two points in a topological space. Prove that	at
$x \sim y$ (x is related to y), if there is a path in X from x to y, is an	
equivalence relation.	5
(c) Prove that a space X is locally connected if and only if for every	
open set U of X , each component of U is open in X .	4