2021

M.Sc. Third Semester CORE – 10 CHEMISTRY Course Code: MCHC 3.21 (Physical Chemistry-IV)

Total Mark: 70

Time: 3 hours

Pass Mark: 28

Answer five questions, taking one form each unit.

UNIT-I

1.	(a)	Derive Gibb's adsorption isotherm equation.	6
	(b)	Explain the structural features and behaviour of surfactants.	4
	(c)	Define Kraft temperature. Relate it with surfactants solution.	4
2.	(a)	Give an account on the adsorption at the solid-liquid interface.	5
	(b)	Explain the formation of	3×2=6
		(i) hydrophobic interaction	
		(ii) hydrophilic interaction for surfactants	
	(c)	Explain briefly how added electrolytes affects the surface exce	ess of
		ionic surfactants.	3

UNIT-II

3.	8. (a) Define CMC. Suggest a method for measuring CMC and condu						
		behaviour of ionic micellar solution.	5				
	(b)	Briefly explain counter-ion and discuss in detail counter-ion bind	ding on				
		CMC.	2+4=6				
	(c)	How does temperature affects CMC of a surfactants?	3				
4.	(a)	Define mixed micelles. Show how CMC of mixed micelles are					
		measured.	4				
	(b)	Explain thermodynamics of micellisation.	6				
	(c)	Describe the shape and structure of micelles.	4				

UNIT-III

5.	a)	Write short notes on:	3×2=6
		(i) coalescence	
		(ii) creaming and sedimentation	
		(iii) flocculation	
	(b)	Give a detail account of conductance behaviour of microemulsio	ns
		with examples.	6
	(c)	Mention two roles of emulsifiers.	2
6.	(a)	Give a detail mechanism of emulsification of oil and water.	5
	(b)	Discuss how chemical reactivity behaves in microemulsions.	5
	(c)	Give an account for solvolytic reactions.	4

UNIT-IV

7.	(a)	Explain the structural elucidation and distribution of interstitial sites in								
		(i) AX types								
		(ii) AX_2 with relevant example.	7×2=14							

8.	. (a) Write a short essay on crystalline arrangement in alloys.								alloys.	5	
	(b)]	Explain	the sta	ructural	feature	es of te	etrah	edral	and	octahedral voids.	5
	<pre>/ `` /</pre>	~1 1		1 1	4	1 •	0	. •	0	• 11	

(c) Show how to calculate the packing fraction of a ccp unit cell. 4

UNIT-V

9.	(a)	Explain how materials are classified.	4
	(b)	Discuss ferro and antiferromagnetic ordering.	6
	(c)	Write notes on: 2	2×2=4
		(i) pyroelectricity	
		(ii) piezoelectricity	
10.	(a)	What are dielectric materials? Briefly explain the concept of diele	ectric
		constant.	6
	(b)	Explain intrinsic and extrinsic semiconductors.	6
	(c)	Write short notes on:	2
		(i) insulators	
		(ii) superconductors	