2021 M.Sc. Third Semester CORE – 09 MATHEMATICS Course Code: MMAC 3.11 (Numerical Analysis)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a) Write a short note on error in numerical analysis.	3
	(b) Perform five iterations of the bisection method to obtain t	he smallest
	positive root of the equation $f(x) \equiv x^3 - 5x + 1 = 0$.	3
	(c) Compute a root of the equation $x^5 - 3x^2 - 100 = 0$ corre	ect to three
	decimal places using Newton-Raphson method.	4
	(d) Discuss the rate of convergence of Regula-Falsi method.	4
2.	(a) What is an iterative method? What are the criterion for ter	rmination of
	iterative methods?	2
	(b) Perform five iterations of the Muller's method to find the	root of the
	equation $f(x) \equiv \cos x - xe^x = 0$ using the initial approximation	mation
	$x_0 = -1, x_1 = 0$ and $x_2 = 1$.	6
	(c) Find the root of the equation $f(x) \equiv x^4 - x + 10 = 0$ con	rect to five
	decimal places using multipoint iteration method. (take x_0	=1.5) 6

UNIT-II

3. (a) Solve the system of equations by Cramer's rule.

(b) Solve the following system of equations

x + y + z = 6 $2x + (3 + \varepsilon)y + 4z = 20$ 2x + y + 3z = 13

using Gauss elimination method, where ε is small such that $1 \pm \varepsilon \approx 1$.

- (c) Using Cholesky or partition method to find the inverse of the matrix
 - $\begin{bmatrix} 2 & 1 & 1 & -1 \\ 1 & 3 & 1 & 0 \\ 1 & 1 & -2 & 1 \\ -1 & 0 & 1 & 0 \end{bmatrix}$ 7

4. (a) Solve the system of equations

$$3x-2y = 5$$
$$-x+2y-z = 0$$
$$-2y+z = -1$$

using Gauss-Seidel method. Assume suitable approximation and perform four iterations.

(b) Find the largest and the smallest eigenvalue and its corresponding eigenvector of the matrix (only three iterations each)

$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

using power method.

6

UNIT-III

5. (a) Using Newton's divided difference formula, find y(10) given that

$$y(5) = 12, y(6) = 13, y(9) = 14, y(11) = 16$$
4

(b) The following data represents the function $f(x) = e^x$

x	1	1.5	2	2.5
f(x)	2.7183	4.4817	7.3891	12.1825

Estimate the value of f(2.25) using Newton's backward difference interpolation. Compare with the exact value. Obtain the bound on the truncation error. 6

4

7

(c) Prove the following:

(i) If
$$f(x) = e^{ax}$$
, show that $\Delta^2 f(x) = (e^{ah} - 1)^n e^{ax}$
(ii) $\Delta + \nabla = \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta}$
(iii) $(1 + \Delta)(1 - \nabla) = 1$
(iv) $\sqrt{1 + \delta^2 \mu^2} = 1 + (\frac{1}{2})\delta^2$

6. (a) Construct the Hermite interpolation polynomial that fits the data 7

x	f(x)	f'(x)
2	29	50
3	105	105

Interpolate f(x) at x = 2.5

(b) Obtain the cubic spline interpolation for the data (taking

$$M_0 = M_4 = 0$$
)

x	1	2	3	4	5
F(x)	1	0	1	0	1

UNIT-IV

7. (a) The velocity of a particle for 8 seconds at an interval of 2 seconds is given below. Find the initial acceleration using the entire data.

Time (sec)	0	2	4	6	8
Velocity (m/sec)	0	172	1304	4356	10288

(b) The following data represents the function $f(x) = e^{2x}$

x	0	0.3	0.6	0.9	1.2
f(x)	1.0000	1.8221	3.3201	6.0496	11.0232

Find f'(1.2), f''(0.9), f''(12) using Newton's backwards difference method. Compute the magnitudes of errors.

(c) Given the following data, find y'(6) and y''(6)

x023478y42658112466668

8. (a) Find the value of $\int_0^5 \frac{dx}{4x+5}$ using Simpson's 1/3 rule and hence find

the value of $\log_e 5$ (take n = 10).

(b) Evaluate $I = \int_0^2 \frac{dx}{3+4x}$ using the two point and three point Gauss quadrature. Compare with the exact solution.

UNIT-V

9. (a) Convert the following system of second order differential equation into a system of first order differential equation and write the corresponding initial value problem

$$y''' = e^{x} + y' + u' + u + y, \ y(1) = 3, y'(1) = 1$$
$$u'' = e^{x} + 9xu + 6u' + 9y' + 10y, u(1) = 1, u'(1) = 2$$

6

4

6

7

4

(b) Solve the following equation by Picards method and estimate y at x = 0.25 and 0.5

$$\frac{dy}{dx} = x + y, y(0) = 1 \tag{4}$$

- (c) Find y(0.1) using backward Euler method, if $y' = x^2 + y^2$, y(0) = 1(use h = 0.1) 6
- 10. (a) Find the solution for the initial value problem

$$y' = x^2 - y^2, y(0) = 1, t \in [0, 0.6]$$

by Adams-Bashforth method of order three with h = 0.1. Determine the starting value using the third order Taylor series method.

(b) Solve the system of equations

$$u' = -3u + 2v, u(0) = 0$$

$$v' = 3u - 4v, v(0) = 0.5$$

with h = 0.2, use the classical Runge-Kutta fourth order method.

(c) For the initial value problem $y' = \frac{2y}{x}$, y(1) = 2, estimate y(2) using

Milne-Simpson method. Assume h = 0.25

,	-		,	
1		١		
)		
1				

4