2021 M.Sc. Third Semester CORE – 09 CHEMISTRY Course Code: MCHC 3.11 (Inorganic Chemistry - III)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	What is infrared spectroscopy? NH_3 stretching frequencies of the complexes are lower than those of the free NH_3 molecule. Give	;
		-	5=7
	(b)	How will we know whether SCN- is coordinated through sulphus	r or
		nitrogen?	31/2
	(c)	CN ⁻ stretching frequencies get shifted to higher value on	
		coordination. Why?	31/2
2.	(a)	Discuss the infrared structural studies of the aquo and hydroxo	
		complexes.	4
	(b)	How will you differentiate free sulphato ion and unidentate complete	ex
		from their IR spectrum? Illustrate with examples.	6
	(c)	Write the application of Raman spectroscopy.	4

UNIT-II

3.	(a) What is the principal of EPR spectroscopy?	3
	(b) Calculate the number of NMR lines in the following	2×4=8
	(i) ClF ₃	
	(ii) BrF_{3}	
	(iii) $P_4 S_3$	
	(iv) SF_4	
	(c) Calculate the number of lines in NMR spectrum of PF_5 at	very low
	temperature.	3

4.	(a) What is the principle of NMR spectroscopy?	3
	(b) Calculate the number of lines in EPR spectroscopy of the following	
	(i) $\dot{C}H_2D$ (D,I=1)	
	(ii) $\overset{\bullet}{N}H_3(N_2I=1)$	

(ii) $\dot{C}D_3$ (D,I=1) $2 \times 3 = 6$

(c) State and explain Drago's rule with examples. 2+3=5

UNIT-III

5.	(a) Discuss the basic principles of mass spectroscopy with	
	instrumentation.	3+3=6
	(b) Write note on any two types of fragmentation.	2+2=4
	(c) Briefly explain chemical ionisation. Give its advantages.	3+1=4
6.	(a) Discuss the application of MALDIMS in biomolecules.	5
	(b) Write note on isotope abundance.	4

(c) Draw the bar-graph representation of the mass-spectrum of	
<i>n</i> -butane and also give its fragmentation.	3+2=5

UNIT-IV

7.	(a)	Give an account on isomer shift and its interpretation.	5
	(b)	Discuss the effect of magnetic field on Mossbauer spectra.	5
	(c)	Write short note on the application of Mossbauer spectroscopy to	
		metal carbonyls.	4
8.	(a)	Write short note on the principle of Mossbauer spectroscopy.	4
	(b)	Explain the quadrupole interaction of MS by taking Fe-57 as an	
		example.	5
	(c)	Discuss the application of MS to iron compounds.	5

UNIT-V

9.	(a) Give an account on the <i>d</i> -spacing formulae and systemetically		nt
		reflections from X-ray diffraction of crystals. 2+2=	=4
	(b)	Discuss the relationship between the point symmetry and structure	of
		molecules by taking methylene dichloride (CH ₂ Cl ₂) molecule as an	
		example.	6
	(c)	Explain the screw axes and the different types of glide planes that	
		occur in the crystals.	4
10.	(a)	Discuss the interpretation of Bragg's equation $2d \sin \theta = n\lambda$	4
	(b)	Give an account on the orthorhombic point group 222 by drawing	
		the stereographic projection.	5
	(c)	Explain the crystal growing data collection with the help of diagram	S.
			5