2021 M.Sc. First Semester CORE – 04 PHYSICS Course Code: MPHC 1.41 (Statistical Mechanics)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a)	Explain the terms: phase space, ensemble, microstates and	
		macrostates.	4
	(b)	State and prove Boltzmann's theorem connecting entropy and	
		probability.	5
	(c)	What do you mean by partition function? Express entropy and	
		Helmholtz free energy in terms of the partition function.	5
2.	(a)	Show that the mean energy for a canonical ensemble is given by	4

$$\overline{E} = KT^2 \frac{\partial}{\partial T} \ln Z$$

- (b) Define magnetic susceptibility. Obtain the condition for saturate state of thermodynamic systems.
- (c) Consider a system of N identical particles which can occupy energy level 0, E. Find the partition function and also find Helmholtz free energy, average energy, entropy and specific heat.

UNIT-II

- 3. (a) Write the partition function for a system of grand canonical ensemble. Use it to calculate the thermodynamics properties of an ideal gas. 7
 - (b) Four identical particles can be in any of five states. What is the number of possible ways of distributing them in various states according to Maxwell-Boltzmann, Bose-Einstein and Fermi-Dirac statistics?
 3

	(c)	Explain the quantum Liouville's theorem.	4
4.	(a)	Explain density matrix. Obtain the equation for the postulates of	
		random phase.	8
	(b)	Explain the conditions for Fermi-Dirac statistics and derive its energy	gy
		distribution law.	6
		UNIT-III	
5.	(a)	Discuss the difference between MB, FD and BE statistics. Show the	nat

- in the limiting case, both FD and BE statistics reduce to MB statistics. 7 4
 - (b) Explain Dulong-Petit's law of specific heat capacity.
 - (c) There are 2.54×10^{22} free electrons per *cm*³ in sodium. Calculate its Fermi energy and Fermi velocity ($h = 6.63 \times 10^{-34}$ joule-sec, $m = 9.11 \times 10^{-31} kg$, $K = 1.38 \times 10^{-23}$ joule/k). 3
- (a) Using necessary mathematical theory, prove that the specific heat of 6. solid at low temperature varies as the cube of the absolute 7 temperature.
 - (b) What is meant by black body radiation? Derive the Planck's radiation law and show that it reduces to Rayleigh-Jeans law for long wavelength. 7

UNIT-IV

7.	(a)	Derive the expression for the energy fluctuation in a canonical	
		ensemble.	4
	(b)	Calculate the relative root mean square fluctuation in energy for a	
		2	

monoatomic ideal gas of energy
$$\frac{3}{2}NkT$$
 and $C_v = \frac{3}{2}Nk$.

- (c) With the help of Einstein theory of Brownian motion, show that diffusion process is irreversible and keep on increasing with time. 7
- (a) Discuss Fourier analysis of a random function. Hence derive 8. Wiener-Khintchine theorem.
 - (b) Explain Langevin's theory of the Brownian motion and show that

diffusion coefficient =
$$\frac{kT}{m\delta}$$
. 6

8

UNIT-V

9.	(a) Derive Van der Waal's equation of state and find the thermodynamic	ic
	coordinates of critical point V_C , P_C and T_C ?	7
	(b) Explain first and second order phase transitions with one example each.	4
	(c) The coordinates of the triple point of water are $t = 0.0075^{\circ}$ C and $p = 0.0060$ atmosphere. Calculate the slope of the ice line in atmos/°C.	3
10		3
10	transition.	6
	(b) Explain Ising Model. Use Bragg-William approximation method to	
	obtain expressions for entropy and free energy under this model.	8