2021 M.Sc. **First Semester** CORE - 04MATHEMATICS Course Code: MMAC 1.41 (Abstract Algebra)

Total Mark: 70 Time: 3 hours

Pass Mark: 28

4

Answer five questions, taking one from each unit.

UNIT-I

(a) Prove that the set of all positive rational numbers form an abelian 1.

group under the operation defined by $a * b = \frac{ab}{2}$.	5
b) Prove that the centre of a group is a subgroup of the group.	5

- (b) Prove that the centre of a group is a subgroup of the group.
- (c) Show that a homomorphism $f: G \to G'$ is one-one if and only if ker $f = \{e\}$, where G and G' are groups.
- (a) Prove that the union of the subgroups of a group is a subgroup if and 2. only if one is contained in the other. 6
 - (b) Prove that a subgroup H of a group G is a normal subgroup of G if and only if every left coset of H in G is a right coset of H in G. 4 4
 - (c) Show that A_4 is the only subgroup of order 12 in S_4 .

UNIT-II

3.	(a) Explain group action by conjugation.	4
	(b) State and prove Cayley's theorem.	6
	(c) If G is a finite group, show that G is a p -group if and only if	
	$O(G) = p^n$.	4
4.	(a) State and prove Sylow's first theorem.	8
	(b) Prove that the dihedral group D_n has $2n$ elements.	6

UNIT-III

5. (a) Show that no group of order 30 is simple. 5

(a) Prove that in a UFD an element is prime if and only if it is irreducib	ole.
	6
(b) If <i>R</i> and <i>S</i> are two rings, prove that	

$$ch(R \times S) = \begin{cases} 0, & \text{if } ch \ R = 0 \text{ or } ch \ S = 0 \\ k, & \text{where } k = lcm(ch \ R, ch \ S), \text{ otherwise} \end{cases}$$

(c) If R is a ring with unity such that R has no right ideals except $\{0\}$ and *R*, show that *R* is a division ring. 4

UNIT-V

9.	(a)	Prove that the product of two primitive polynomials is also a primitive	ve
		polynomial.	5
	(b)	If F is a field, prove that $F[x]$ is a PID.	5
	(c)	For any prime p, show that the polynomial	
		$x^{p-1} + x^{p-2} + \ldots + x^2 + x + 1$ is irreducible over \mathbb{Q} .	4
10.	(a)	State and prove Eisenstein's criterion for irreducibility.	6
	(b)	Show that the polynomial $x^2 + x + 2$ is irreducible in $\mathbb{Z}_3[x]$ and use	it
		to construct a field of 9 elements.	4
	(c)	Show that the polynomial $x^2 + 1$ is irreducible over \mathbb{Z}_3 but reducible)
		over \mathbb{Z}_5 .	4

(a) If A and B are two ideals of a ring R, prove that A+B is an ideal of

(c) If \mathbb{Z} is the ring of integers, show that the only homomorphisms from

R, containing both A and B. (b) Prove that a Euclidean domain is a PID.

 \mathbb{Z} to \mathbb{Z} are the identity and zero mappings.

primes, show that G is not simple.

7.

8.

- (b) Find all the conjugate classes in S_4 and verify the class equation. 7 **UNIT-IV**
- (c) Show that $G_1 \times G_2$ is abelian if and only if both G_1 and G_2 are abelian. 5 (a) If G is a group of order pqr, p < q < r, where p, q and r are distinct 6.
- (b) Show that the relation of conjugacy is an equivalence relation.

4

7

4

6

4