2021

M.Sc. First Semester CORE – 04 CHEMISTRY Course Code: MCHC 1.41

(Physical Chemistry - II)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a) Write a note on the struc	ture of water.	4
	(b) Determine the mean ioni	c activity coefficient by cryoscopic method	1.
			7
	(c) Calculate the activity co	efficient of 0.05 M KCl solution at 25°C.	3
2.	(a) What is electrochemical	potential? Explain.	2
	(b) What is solvation energy	? Explain the different types of solvation	
	number giving suitable ex	amples.	5
	(c) Derive the Debye-Huck	el-Onsager equation for an electrolyte.	5
	(d) Define the following term	s:	2
	(i) Activity		
	(ii) Activity coefficient		

UNIT-II

3.	(a)	Explain the Stern model of the electrical double layer.	5
	(b)	Give the expression of mean ionic activity coefficients in terms of	
		ionic strength.	5
	(c)	Define concentration polarization.	2
	(d)	Write a note on non-polarization interface.	2
4.	(a)	Derive an expression of chemical potential charge acting in an	
		electrolyte solution using Debye-Huckel theory of ion-ion interact	ion.
			5
	(b)	Discuss the linearized Poisson-Boltzmann equation.	31/2
	(c)	Derive the Butler-Volmer equation of basic electrodes.	51/2

UNIT-III

5.	(a) State and explain the Fick's first law of steady state diffusion.	3
	(b) Give the mathematical expression of Nernst-Einstein equation.	3
	(c) Write a short note on thermodynamic view of diffusion.	2
	(d) Write the diffusion equation and state the importance of the equation	on.
		4
	(e) How is thermal conductivity related to mean free path? Explain.	2
6.	(a) Derive and explain the Stokes-Einstein equation.	6
	(b) Show how fluxes are related to concentration gradient.	5
	(c) Explain the Fick's second law of diffusion.	3

UNIT-IV

7.	(a) Discuss the phenomenological equations.	5
	(b) Derive an expression for entropy production and entr	opy flow in
	open systems.	7
	(c) Write a short note on Clausius inequality.	2
8.	(a) What are electrokinetic phenomena? Discuss.	5
	(b) Establish the expression for the entropy production d	ue to heat flow.
		7
	(c) Write a note on stationary non-equilibrium states.	2

UNIT-V

9.	9. (a) Explain the most probable distribution in statistical thermodynamics	
	(b) Give an expression for rotational partition function.	4
	(c) Discuss Debye theory of heat capacity of solids.	4
	(d) Explain the partition function in terms of entropy.	2
10.	(a) Discuss Fermi-Dirac statistics.	6
	(b) Derive the statistical expression for equilibrium constant.	6
	(c) Explain the electronic partition function.	2