2021 M.Sc First Semester CORE – 03 PHYSICS Course Code: MPHC 1.31 (Mathematical Physics)

Total Mark: 70 Time: 3 hours

Answer five questions, taking one from each unit.

UNIT-I

1.	(a) Find the Fourier transform of xe^{-ax^2} for $a > 0$.	3
	(b) Find the Fourier sine and cosine transform of x^{n-1} .	5

(c) Solve the differential
$$2\frac{d^2y}{dt^2} + \frac{dy}{dt} - 3y = e^{5it}$$
 using Fourier transform.

2. (a) Solve for f(x) from the integral equation

$$\int_{0}^{\infty} f(x) \sin sx dx = \begin{cases} 1 \text{ for } 0 \le s < 1 \\ 2 \text{ for } 1 \le s < 2 \\ 0 \text{ for } s \ge 2 \end{cases}$$
3

(b) Find the Fourier sine transform of $f(x) = \frac{e^{-ax}}{x}$ and use it to evaluate

$$\int_{0}^{\infty} \tan^{-1}\left(\frac{x}{a}\right) \sin x dx \,.$$
 5

(c) Solve the wave equation $\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2}, -\infty < x < \infty, t \ge 0$ with

conditions $u(x,0) = f(x), \frac{\partial u}{\partial t}(x,0) = 0$ and assuming $u, \frac{\partial u}{\partial t} \to 0$

ematical Ph

Pass Mark: 28

6

as $x \to \pm \infty$

UNIT-II

3. (a) Find the inverse Laplace transform of
$$\frac{s+1}{s^2-6s+25}$$
. 3

(b) State and prove convolution theorem.

(c) Solve the differential equation
$$\frac{d^2 y}{dx^2} + 2\frac{dy}{dx} + 5y = e^{-x} \sin x$$
, where $y(0) = 0$, and $y'(0) = 1$.

- (b) Find the Laplace transform of $\sin \sqrt{t}$. Hence find $L\left(\frac{\cos \sqrt{t}}{\sqrt{t}}\right)$. 5
- (c) An inductor of 3 henry is in series with a resistance of 30 ohms and an e.m.f of 150 volts. Assuming that the current is zero at t = 0, find the current time t > 0.

UNIT-III

5. (a) If Y^i is an independent function of the variables X^i and z^i are

independent functions of
$$Y^i$$
 and if $U^i = V^j \frac{\partial X^i}{\partial Y^j}$ and $V^i = W^j \frac{\partial Y^i}{\partial z^j}$

for
$$i, j = 1, 2, ..., n$$
, then show that $U^i = W^j \frac{\partial X^i}{\partial z^j}$. 3

(b) Show that tensor product of the tensors of the type (r, s) and

$$\overline{r},\overline{s}$$
) is a tensor of the type $(r+\overline{r},s+\overline{s})$. 5

(c) Show that the law of transformation of Christoffel's symbol possess group property. 6

5

3

- 6. (a) If a_{ij} is a second order rank covariant symmetric tensor and $|a_{ij}| = a$, then show that \sqrt{a} is a scalar density. 3
 - (b) Show that $g_{ij}dx^i dx^j$ is an invariant. 3

8

5

4

(c) Derive the law of transformation of Christoffel symbol.

UNIT-IV

7. (a) Prove
$$\int_{-1}^{+1} P_m(x) \cdot P_n(x) dx = 0$$
. 6

(b) Prove the Rodrigue's formula for Legendre equation i.e.

$$P_n(x) = \frac{1}{2^n \cdot n!} \frac{d^n}{dx^n} (x^2 - 1)^n.$$
8

- 8. (a) Show that Bessel's function $J_n(x)$ is an even function when *n* is even and is odd when *n* is odd. 6
 - (b) Derive the solution of Bessel's function of second kind of order n. 8

UNIT-V

- 9. (a) Suppose that $f: A \to B$ and $g: B \to C$. Then
 - (i) if f and g are both injective, then $g \circ f$ is also injective
 - (ii) if $g \circ f$ is injective, then f is injective. 4
 - (b) Show that the set of integers forms an abelian group under addition. 5
 - (c) Show that the group formed by the set $\{1, \omega, \omega^2\}$, ω being the cube

root of unity i.e. $\omega^3 = 1$ is a cyclic group with respect to multiplication.

- 10. (a) Find the permutation group isomorphic to the group $(\{1, -1, i, -i\}, \times)$
 - (b) Explain the terms rotational, reflection and inversion symmetry with proper examples. How do we build up a point group? 6+4=10