2021 M.Sc. First Semester CORE – 03 MATHEMATICS Course Code: MMAC 1.31 (Real Analysis)

Total Mark: 70 Time: 3 hours Pass Mark: 28

Answer five questions, taking one from each unit.

UNIT-I

1.	(a) If X is countable and $Y \subseteq X$, then prove that Y is at most	
	countable.	5
	(b) Prove that the interior of a set A is the largest open set in A .	5
	(c) Is $\{1,2,3\} \times (\mathbb{R} \setminus \mathbb{N})$ countable? Justify.	4
2.	Prove that the Cartesian product of two countable sets is countable.	
		0

(b) Let X be an infinite set and $x \in X$. Exhibit a bijection between X and $X \setminus \{x\}$.

(c) Is
$$A = \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$$
 compact in \mathbb{R} ? Justify. 4

UNIT-II

3. (a) Let (x_n) be a sequence in a metric space (X, d) and let $x \in X$. Prove that (x_n) converges to x if and only if for all open subset V of X containing $x, \exists N \in \mathbb{N}$ such that $x_n \in V, \forall n \ge N$. 7 (b) Prove that *e* is irrational.

4. (a) Let (X,d) be a metric space, $A \subseteq X$ and $x \in \overline{A}$. Prove that there exists a sequence in A which converges to x. 7

(b) Discuss the convergence of
$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$$
 7

UNIT-III

- 5. (a) Let $f: X \to Y$ be continuous, where X, Y are metric spaces. If F is a closed set in Y, prove that $f^{\leftarrow}(F)$ is closed in X. If A is a closed set in X, is f(A) closed in Y? Justify. 8
 - (b) If $f:]a, b[\rightarrow \mathbb{R}$ is differentiable and $f'(x) \ge 0, \forall x \in]a, b[$, then is f monotonically increasing or decreasing? Justify. 6
- 6. (a) Let $f: X \to Y$ be continuous, where X, Y are metric spaces. If X is connected, prove that f(X) is also connected. 7
 - (b) Describe and justify the chain rule in differentiation. 7

UNIT-IV

- 7. (a) If f:[a,b]→ R is bounded and P, P* are partitions of [a,b] such that P* is finer than P, then how are L(P, f) and L(P*, f) related?
 - (b) If *f* is continuous in [*a*,*b*]⊂ R and *f* is real-valued, prove that *f* is integrable. Is the converse true?

- 8. (a) Prove that $f:[a,b] \to \mathbb{R}$ is integrable if and only if given $\varepsilon > 0$, there exists $\delta > 0$, a partition $P = \{x_0, x_1, ..., x_n\}$ of [a,b] with $\|P\| < \delta$ and a real number L such that $\forall t_i \in [x_{i-1}, x_i]$, we have $\left|\sum_{i=1}^n f(t_i)(x_i - x_{i-1}) - L\right| < \varepsilon$.
 - (b) If f:[a,b]→ ℝ is bounded and has a point of discontinuity, is f
 integrable? Justify.

UNIT-V

9. (a) For
$$x \in \mathbb{R}, x \ge 0$$
, evaluate the following. 6

(i) $\lim\left(\frac{\sin nx}{1+nx}\right)$

(ii)
$$\lim \left(e^{-nx} \right)$$

(b) State and prove the Cauchy criterion for uniform convergence. 8

10. (a) Show that if a > 0, then the convergence of the sequence $\left(\frac{x}{x+n}\right)$

is uniform on the interval [0, a], but is not uniform on the interval $[0, \infty[$.

8

6

(b) Show that for all $x \in \mathbb{R}, x \ge 0$

(i)
$$\lim\left(\frac{x}{x+n}\right) = 0$$

(ii)
$$\lim \left(x e^{-nx} \right) = 0$$