2021 M.Sc. First Semester CHEMISTRY Course Code: MCHC 1.31

(Physical Chemistry - I)

Total Mark: 70 Time: 3 hours Answer <u>five</u> questions taking <u>one</u> from each Unit. Pass Mark: 28

3

UNIT-I

1.	(a)	Prove that if there exists a set of functions which are eigen function	ns
		of two operators \hat{A} and \hat{B} they must commute.	3
	(b)	Discuss the uncertainty principle.	4
	(c)	Solve the equation of hydrogen atom using Schrodinger equation.	
-		~	7
2.	(a)	State and explain the third postulate of quantum mechanics. 2	1/2
	(b)	What is Hermitian operator? Examine if $\frac{d^2}{dx^2}$ is a Hermitian or no	ot.
			3
	(c)	What is a normalized wave function? Write the properties of well-	-
			1/2
	(d)	Solve the equation for the harmonic oscillator quantum	
		mechanically.	6
		UNIT-II	
3.	(a)	Write the molecular orbital theory for hydrogen molecule.	6
	(b)	Solve the non-linear variation function equation.	5
	(c)	Explain the correlation diagram of homonuclear diatomic	

4. (a) Discuss Born-Oppenheimer approximation. (b) What are the approximations introduced in the Huckel theory? 6

molecules.

(c) What are symmetric and anti-symmetric wave functions? Explain. 3

UNIT-III

5.	(a)	Derive the BET equation.	7
	(b)	Explain the Young-Dupre equation.	2
	(c)	What are the factors that contribute to the strength of hydropho	bic
		interaction?	4
	(d)	Define surface free energy.	1
6.	(a)	Derive the Gibbs adsorption isotherm equation.	5
	(b)	What is micellization? Explain the thermodynamic parameters for	or
		its formation.	5
	(c)	What is capillary action? If water at 25°C rises through 7.36 cn	<i>i</i> in
		a capillary of radius 0.2 mm, what is its surface tension at that	
		temperature? ($p = 997.1 \text{ kg m}^{-3}$) 2+2	2=4

UNIT-IV

7.	(a)	What are the different types of defects? Discuss point defect in	
		detail.	

(b) Find the Miller indices of(i) the sets of planes intersecting the axes represented by labels

$$\left(\frac{1}{2},\frac{1}{3},\infty\right)$$
 and $\left(-1,1,\infty\right)$

(ii) the planes that intersects the crystallographic axes at the

distance (3a, 2b, c) and $(2a, \infty b, \infty c)$

4

3

4

5

- (c) What are extrinsic semi conductors? Discuss briefly giving diagrams.
- (d) Diffraction angle θ equal to 8.4° for a crystal having interplanar distance in the crystal is 0.400 *nm* when first order diffraction was observed. Calculate the wavelength of X-ray used. (Given 1 *nm* = $10^{-9} m$) 2

8.	(a)	Discuss the Kroger-Vink notation for crystal defects. Give	
		examples.	6
	(b)	What are colour centres? How do they arise?	4

(c) Write a note on p-n junction.

UNIT-V

9.	(a)	Which factors govern the intensities of rotational spectral lines in a	l
		rigid diatomic rotator? Illustrate using the appropriate curve.	6
	(b)	Explain the vibrational spectra of diatomic molecules.	5
	(c)	What are Stokes and anti-Stokes lines? Is the intensity of Stokes	
		lines different from that of anti-Stokes lines? Explain.	3
10.	(a)	What do you mean by selection rule? What is the selection rule for	r
		pure rotational spectra?	2
	(b)	Write Morse equation for the energy of the vibrational levels of th	e
		anharmonic oscillator. Compare the potential energy curve of the	
		anharmonic oscillator with the harmonic oscillator.	5
	(c)	The rotational spectrum of HCl molecules shows that the rotational	al
		lines are equally separated by 20.70 cm^{-1} . Calculate the	
		internuclear bond length.	4
	(d)	Which of the following molecules will show a pure rotational	
		spectrum?	
		HCl, CO, CH ₃ Cl, H ₂ , NH ₃ , H ₂ O.	3
		5 2 5 2	