2021 M.Sc. First Semester CORE – 02 PHYSICS Course Code: MPHC 1.21 (Quantum Mechanics - I)

Total Mark: 70 Time: 3 hours Pass Mark: 28

3

Answer five questions, taking one from each unit.

UNIT-I

1.	(a) Obtain the Born's statistical interpretation of a wave function	
	associated with a particle.	
	(b) Obtain equation of continuity. Give its physical significance.	5
	(c) Consider the wave function of a particle	

$$\Psi(x) = A\left(1 - \frac{x}{a}\right), \text{ for } \frac{a}{2} < x < a$$

Find the normalization constant A and also obtain $\langle x \rangle$ 5

2. (a) Find the probability current density if the wave function is

$$\psi(x) = A e^{ikx}$$

(b) Show that
$$\frac{d\langle x\rangle}{dt} = \frac{\langle P_x\rangle}{m}$$
 4

 (c) Establish the Schrödinger equation for a linear harmonic oscillator and solve it to obtain its eigenvalues and eigenfunctions. Discuss the significance of zero-point energy.
7

UNIT-II

3.	(a)	What are bound state and stationary state? A state may be bound state classically but not necessarily for quantum mechanical state. Justify the statement with examples.	7
	(b)	Define delta potential. Show that the delta function potential has onl one bound state.	у 7
4.	(a)	Define Hermitian operator. Show that the position and momentum operators are Hermitian operators.	7
	(b)	Explain Hilbert space in detail.	7
		UNIT-III	
5.		Show that the commutator of position coordinate and the corresponding momentum component is non-vanishing and for the component which does not corresponds to it is zero. Explain the coherent state of the harmonic oscillator.	5 5
	(c)	Explain the Dirac Bra-Ket notation and give its properties.	4
6.	(a)	Discuss the Schrödinger equation for hydrogen atom qualitatively and	

- obtain its solution for eigenvalues and eigenfunctions. 10
 - (b) Calculate the expectation value of the potential energy in the ground state of the hydrogen atom. 4

UNIT-IV

7.	(a)	Prove that L_+ is a raising angular momentum operator, where	
		$L_{+} = L_{x} + iL_{y}$	4
(b)	Obtain the Pauli spin matrices for spin ½ system.	5
(c)	Obtain Schrödinger equation for a rigid rotator with fixed axis and solve it to obtain the eigenvalues and eigenfunctions.	5

- 8. (a) Derive the recursion relation for Clebsch-Gordan coefficients.
 - (b) Find all the eigen states for a system of two particles having angular momentum $j_1 = 1$ and $j_2 = \frac{1}{2}$ and calculate the corresponding Clebsch-Gordan coefficients. 7

7

7

UNIT-V

- 9. (a) Obtain the mathematical formulation of Slater determinant. Find the overall wave function of ground state and first excited state for helium atom using Slater determinant. 9
 - (b) Show that the normalized wave functions of ortho helium is symmetric and anti-symmetric for para helium. Draw the singlet and triplet energy level diagram.
- 10. (a) Derive the Schrödinger time independent equation for two particle system. Obtain the ground state eigenfunctions and eigenvalues for identical bosons and fermions.
 - (b) Explain the mechanism of exchange forces for distinguishable particles and identical particles.